相似三角形教案

  2009-04-30 15:56:56  
相似三角形教案 相似三角形 教学目标 (一)教学知识点 1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似. 2.能根据相似比进行计算. (二)能力训练要求 1.能根据定义判断两个三角形是否相似,训练学生的判断能力. 2.能根据相似比求长度和角度,培养学生的运用能力. (三)情感与价值
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

相似三角形教案

    相似三角形
    教学目标
    (一)教学知识点
    1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.
    2.能根据相似比进行计算.
    (二)能力训练要求
    1.能根据定义判断两个三角形是否相似,训练学生的判断能力.
    2.能根据相似比求长度和角度,培养学生的运用能力.
    (三)情感与价值观要求
    通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.
    教学重点
    相似三角形的定义及运用.
    教学难点
    根据定义求线段长或角的度数.
    教学方法
    类比讨论法
    教具准备
    投影片三张
    第一张(记作§4.5 A)
    第二张(记作§4.5 B)
    第三张(记作§4.5 C)
    教学过程
    Ⅰ.创设问题情境,引入新课
    [师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.
    [生]对应角相等,对应边成比例的两个多边形叫做相似多边形.
    相似多边形对应边的比叫做相似比.
    [师]很好.请问相似多边形指的是哪些多边形呢?
    [生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.
    [师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.
    Ⅱ.新课讲解
    1.相似三角形的定义及记法
    [师]因为相似三角形是相似多边形中的一类,因此,相似三角形的定义可仿照相似多边形的定义给出,大家可以吗?
    [生]可以.
    三角对应相等,三边对应成比例的两个三角形叫做相似三角形(similar triangles).如△ABC与△DEF相似,记作
    △ABC∽△DEF
    其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比.
    [师]知道了相似三角形的定义,下面我们根据定义来做一些判断.
    2.想一想
    如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?
    [生]由前面相似多边形的性质可知,对应角应相等,对应边应成比例.
    所以∠A=∠D、∠B=∠E、∠C=∠F.
    .
    3.议一议
    投影片(§4.5 A)
    (1)两个全等三角形一定相似吗?为什么?
    (2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?
    (3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
    [师]请大家互相讨论.
    [生]解:(1)两个全等三角形一定相似.
    因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似.
    (2)两个直角三角形不一定相似.
    因为虽然都是直角三角形,但也只能确定有一对角即直角相等,其他的两对角可能相等,也可能不相等,对应边也不一定成比例,所以它们不一定相似.
    两个等腰直角三角形一定相似.
    因为两个等腰直角三角形Rt△ABC和Rt△DEF中,∠C=∠F=90°,则∠A=∠B=∠D=∠E=45°,所以有∠A=∠D,∠B=∠E,∠C=∠F.
    再设△ABC中AC=b,△DEF中DF=a,则
    AC=BC=b,AB= b
    DF=EF=a,DE= a
    ∴
    所以两个等腰直角三角形一定相似.
    (3)两个等腰三角形不一定相似.
    因为等腰只能说明一个三角形中有两边相等,但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似.
    两个等边三角形一定相似.
    因为等边三角形的各边都相等,各角都等于60度,因此这两个等边三角形一定有对应角相等、对应边成比例,所以它们一定相似.
    [师]由上可知,在特殊的三角形中,有的相似,有的不相似.
    两个全等三角形一定相似.
    两个等腰直角三角形一定相似.
    两个等边三角形一定相似.
    两个直角三角形和两个等腰三角形不一定相似.
    4.例题
    投影片(§4.5 B)
    1.如图,有一块呈三角形形状的草坪,其中一边的长是20 m,在这个草坪的图纸上,这条边长5 cm,其他两边的长都是3.5 cm,求该草坪其他两边的实际长度.
    图4-20
    解:草坪的形状与其图纸上相应的形状相似,它们的相似比是2000∶5=400∶1
    如果设其他两边的实际长度都是x cm,则
    x=3.5×400=1400(cm)=14(m)
    所以,草坪其他两边的实际长度都是14 m .
    投影片(§4.5 C)
    2.如图,已知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC=70 cm,∠BAC=45°,∠ACB=40°,求
    图4-21
    (1)∠AED和∠ADE的度数;
    (2)DE的长.
    解:(1)因为△ABC∽△ADE.
    所以由相似三角形对应角相等,得
    ∠AED=∠ACB=40°
    在△ADE中,
    ∠AED+∠ADE+∠A=180°
    即40°+∠ADE+45°=180°,
    所以∠ADE=180°-40°-45°=95°.
    (2)因为△ABC∽△ADE,所以由相似三角形对应边成比例,得
    即
    所以
    DE= =43.75(cm).
    5.想一想
    在例2的条件下,图中有哪些线段成比例?
    [师]请大家试一试.
    [生]成比例线段有
    图中有互相平行的线段,即DE∥BC.因为△ABC∽△ADE,所以∠ADE=∠B.由平行线的判定方法知DE∥BC.
    Ⅲ.课堂练习
    1.在下面的两组图形中,各有两个相似三角形,试确定x,y,m,n的值.
    图4-22
    解:在(1)中
    因为 =
    所以x=32
    在(2)中,由两三角形相似可知:对应角相等,对应边成比例.所以,
    n=55,m=80
    ,得y=
    2.等腰直角三角形ABC与等腰直角三角形A′B′C′相似,相似比为3∶1,已知斜边AB=5 cm,求△A′B′C′斜边A′B′上的高.
    图4-23
    解:如图所示:CD、C′D′分别是△ABC与△A′B′C′斜边AB与A′B′边上的高.
    因为在Rt△ABC中,∠A=45°,CD⊥AB.
    所以CD=AD= AB= (cm)
    同理可知:C′D′=A′D′= A′B′.
    又因为△ABC∽△A′B′C′,且相似比为3∶1.
    所以 .即 ,得
    A′B′=
    所以C′D′= A′B′= (cm)
    Ⅳ.课时小结
    相似三角形的判定方法--定义法.
    Ⅴ.课后作业
    习题4.6
    1.解:因为△ABC∽△DEF
    所以,有 .
    而AB=3 cm,BC=4 cm,CA=2 cm,EF=6 cm.
    得 .
    解,得DE= (cm)
    DF=3(cm)
    2.解:因为两个三角形相似,所以它们的对应角相等,若两内角为50°、60°,则另一内角为180°-50°-60°=70°,这个三角形的最大内角和最小内角就是另一个三角形的最大内角和最小内角.
    因此,另一个三角形的最大内角为70°,最小内角为50°.
    Ⅵ.活动与探究
    引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.
    如图
    图4-24
    已知:DE∥BC,交AB于D、AC于E.
    则有:
    定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.
    已知:如图,如果DE∥BC,DE交AB、AC于D、E
    图4-25
    求证:△ADE∽△ABC.
    证明:∵DE∥BC.
    由引理得   .
    且∠ADE=∠B,∠AED=∠C.
    又∵∠A=∠A.
    ∴由相似三角形的定义可知
    △ADE∽△ABC.
    板书设计
    §4.5  相似三角形
    一、1.相似三角形的定义及记法
    2.想一想
    3.议一议(特殊三角形是否相似)
    4.例题
    二、课堂练习
    三、课时小结
    四、课后作业

中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生