从一个土豆大小谈起

  2009-05-01 12:51:47  
从一个土豆大小谈起 这是一堂数学复习课。同学们根据复习内容——立体图形的体积计算,早把学具一一作了准备。有的拿来 了长方体的铁盒,有的拿来了正方体的纸盒,有的拿来了圆柱形的铁桶,有的拿来了圆锥形的量杯……谁知老 师却提来半桶水和一包细砂土,还带来一架称重量的天平,弄得同学们“丈二和尚摸不头脑”,纷纷议论
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

从一个土豆大小谈起

 这是一堂数学复习课。同学们根据复习内容——立体图形的体积计算,早把学具一一作了准备。有的拿来 了长方体的铁盒,有的拿来了正方体的纸盒,有的拿来了圆柱形的铁桶,有的拿来了圆锥形的量杯……谁知老 师却提来半桶水和一包细砂土,还带来一架称重量的天平,弄得同学们“丈二和尚摸不头脑”,纷纷议论“老 师要干什么呀?”“是不是换复习内容了?”……这时,老师从兜里拿出一个土豆儿,高高举起来,说:“今 天咱们复习立体图形的体积计算,看谁能用学过的知识,计算出土豆儿的体积?”说着,神秘地看了看大家。
    顿时,教室里静了下来。谁都知道,我们虽然学过正方体、长方体和圆柱体、圆锥体的体积计算,但是土 豆儿,方不方、圆不圆,凸凸凹凹,是个不规则的形体,那怎么计算它的体积呢?大家你看看我,我看看你, 一时,谁也不知怎么办?
    正当同学们困惑不解的时候,老师拿起土豆儿,“咚”的一声,将它放入长方体的铁罐内,然后微笑着, 用期待的目光看着同学们。
    “老师,我想出办法了!”小昆兴冲冲地走上讲台,他先用尺子从里面量出长方体铁罐的长(a)、宽(b )和高(h[,1]), 然后将土豆儿放入罐内,并用细砂把铁罐填满。他怕砂子表面不平,还用尺子沿罐边将砂 面刮平。
    这时,有人插话:“要是知道砂子的体积,土豆儿的体积就等于铁罐的容积减去砂子的体积。”
    小昆看了看插话的同学,继续有条不紊地操作。他小心翼翼地将土豆儿从罐内取出,唯恐带出砂子,接着 再用小三角板将罐内的砂面刮平,并测出砂面的高度(h[,2]), 然后对大家说:“罐内砂面的高度由h[,1]降 到h[,2],就是因为取出土豆儿的缘故,所以,土豆儿的体积可以这样计算。”说着,就在黑板上板书起来。
    土豆儿体积=长方体铁罐容积-铁罐内砂子体积
    =V[,1]-V[,2]=abh[,1]-abh[,2]
    “其实,小昆的计算方法可以改进”。还是刚才插话的那位同学,指着小昆的板书说:“abh[,1]-abh[, 2],就是ab(h[,1]-h[,2]),也就是说,土豆儿的体积只要用铁罐的底面积乘以砂面的高度差就可以了。”
    “砂子面的高度差就是从罐内取出土豆儿后,砂面下降的高度,所以,计算土豆儿的体积,只要用长方体 铁罐的底面积乘以砂面下降的高度就可以了。你们看——”大为同学不仅进一步改进了计算方法,而且还在黑 板上画出示意图。
    附图{图}
    土豆儿体积=长方体铁罐的底面积×砂面下降的高度
    V=abh[,3]
    这时,教室里的气氛热烈起来了。
    “要是铁罐不漏水的话,用水代替砂子,照小昆的方法,也可以计算出土豆儿的体积。”
    “用小昆的方法,如果用正方体的容器,也可以计算土豆儿的体积。”(见图)
    附图{图}
    土豆儿的体积=正方体容器的底面积×砂(水)面下降的的高度
    V=a[2]h
    “只要容器的容积大于土豆儿的体积,都可以用上面的方法。你们看,我用这个铁盒也照样可以。”二刚 说着,高高地举起他带来的口小底大的铁皮盒。
    这时,老师一边在黑板上画示意图,一边鼓励二刚:“可以。请你具体讲一讲。”
    附图{图}
    “虽然这个容器的底儿是长方形,但是计算容积时,应该用它的横截面的面积,也就是梯形的面积乘以容 器的长。”说着,他干净利索地操作起来——放入土豆儿,填满砂子,刮平砂面,取出土豆儿,刮平盒内砂面 ,测量容器的横截面上底(a),下底(即砂面的宽度)(b),砂面下降的宽度(h),及容器的长(f)。然 后,板书计算方法:
    土豆儿体积=横截面面积×容器的长度
    V=1/2(a+b)hf
    “测量横截面的面积,也可以用中位线乘以高。”又有人插话。
    “当然可以!”二刚指着容器内,取出土豆儿后,横截面上空出部分所呈现的梯形,胸有成竹地说,“只 要测出中位线(m)和高(h)就可以。”
    土豆儿体积=砂面下降横截面面积×容器的长
    V=mhf
    “刚才,同学们都利用计算直棱柱体积的方法,巧妙地解决了土豆儿体积的计算。大家想一想,还有别的 方法吗?”老师指着同学们带来的其它学具,启发大家。
    这次,小刚同学抢先发了言:“我利用圆柱形的有机玻璃桶,照样可以计算土豆儿体积。”
    “那你试试看。”老师说。
    小刚自信地走上讲台,开始操作:他把圆柱形的有机玻璃桶举到圆柱形的玻璃缸上方,用水将桶注满,然 后把土豆儿轻轻地、慢慢地放进桶里。这时,桶内的水沿着桶的边沿流入缸内,直到水滴停止。接着他从里面 测量了玻璃缸的底面直径和缸内的水面高度,然后,在黑板上板书:
    土豆儿体积=排出的水的体积
    =玻璃缸的底面积×流入缸内的水面高度
    V=sh
    =πr[2]h
    =π(d/2)[2]h
    “这样测量不准确!”
    “可不,桶的侧面还粘有不少水呢!”不少同学提出了意见。
    老师走上讲台,亲切安慰了小刚几句,然后对大家说:“谁能做得准确一些呢?”
    话音刚落,小昆再次走上讲台。他先把土豆儿放进桶内,然后小心地将桶注满水,接着用两把小尺子轻轻 地插入桶内,去夹土豆儿。虽然动作很小心,但是桶内的水还是溢出一点儿,不过量很少,而且他不再测量流 出的水的体积,而是举起取出土豆儿后的桶,对大家说:“刚才满桶的水,现在桶内水面下降了。这下降部分 的体积,就是土豆儿的体积。”小昆见同学们都在认真听讲,接着说:“所以,只要从里面量出桶底的直径和 取出土豆儿后水面下降的高度,就可以算出土豆儿的体积了。”

[1] [2] [3] 下一页  


中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生