有理数的除法

  2009-04-30 19:47:57  
有理数的除法 一、目的要求 1.使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。 2.使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。 二、内容分析 有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

有理数的除法

    一、目的要求
    1.使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。
    2.使学生理解有理数倒数的意义,能熟练地进行有理数乘除混合运算。
    二、内容分析
    有理数除法的学习是学生在小学已掌握了倒数的意义,除法的意义和运算法则,乘除的混合运算法则,知道0不能作除数的规定和在中学已学过有理数乘法的基础上进行的。因而教材首先根据除法的意义计算一个具体的有理数除法的实例,得出有理数除法可以利用乘法来进行的结论,进而指出有理数范围内倒数的定义不变,这样,就得出了有理数除法法则。接下来,通过几个实例说明有理数除法法则,并根据除法与乘法的关系,进一步得到了与乘法类似的法则。最后,通过几个例题的教学,既说明了有理数除法的另一种形式,也指出了除法与分数互化的关系,同时,还指出有理数的除法化成有理数的乘法以后,可以利用有理数乘法的运算性质简化运算,这样,就说明了有理数乘除的混合运算法则。
    本节课的重点是除法法则和倒数概念;难点是对零不能作除数与零没有倒数的理解以及乘法与除法的互化,关键是,实际运算时,先确定商的符号,然后再根据不同情况采取适当的方法求商的绝对值,因而教学时,要让学生通过实例理解有理数除法与小学除法法则基本相同,只是增加了符号的变化。
    三、教学过程
    复习提问:
    1.小学学过的倒数意义是什么?4和的倒数分别是什么?0为什么没有倒数。
    答:乘积是1的两个数互为倒数,4的倒数是,的倒数是,0没有倒数是因为没有一个数与0相乘等于1等于。
    2.小学学过的除法的意义是什么?10÷5是什么意思?商是几?0÷5呢?
    答:除法是已知两个因数的积与其中一个因数,求另一个因数的运算,15÷5表示一个数与5的积是15,商是3,0÷5表示一个数与5的积是0,商是0。
    3.小学学过的除法和乘法的关系是什么?
    答:除以一个数等于乘上这个数的倒数。
    4.5÷0=?0÷0=?
    答:0不能作除数,这两个除式没有意义。
    新课讲解:
    与小学学过的一样,除法是乘法的逆运算,这里与小学不同的是,被除数和除数可以是任意有理数(零作除数除外)。
    引例:计算:8×(-)和8÷(-4)
    8×(-)=-2,
    8÷(-4),由除法的意义,就是要求一个数,使它与-4相乘,积为8,
    ∵(-4)×(-2)=8,
    ∴8÷(-4)=-2。
    从而,8÷(-4)=8×(-),
    同样,有(-8)÷4=(-8)×,
    (-8)÷(-4)=(-8)×(-),
    这说明,有理数除法可以利用乘法来进行。
    又(-4)×=-1,4×=1,
    由4和互为倒数,说明(-4)和(-)也互为倒数。
    从而对于有理数仍然有:乘积为1的两个数互为倒数。
    提问:-2,-,-1的倒数各是什么?为什么?
    注意:求一个整数的倒数,直接写成这个数的数分之一即可,求一个分数的倒数,只要把分子分母颠倒一下即可,一般地,a(a≠0)的倒数是,0没有倒数。
    由上面的引例和倒数的意义,可得到与小学一样的有理数除法法则,则教科书第101页方框里的黑体字,用式子表示,就是a÷b=a·(b≠0)。
    注意:有理数除法法则也表示了有理数除法和有理数乘法可以互相转化的关系,与小学一样,也规定:0不能作除数。
    例1计算。(见教科书第103页例1)
    解答过程见教科书第103页例1。
    阅读教科书第102页至第103页。
    课堂练习:教科书第104页练习第l,2,3题。
    提问:l.正数的倒数是正数,负数的倒数是负数,零的倒数是零,这句话正确吗?
    (答:略)
    2.两数相除,商的符号如何确定?为什么?商的绝对值呢?
    答:商的符号由两个数的符号确定,因为除以一个数等于乘以这个数的倒数,当两个不等于零的数互为倒数时,它们的符号相同。故两数相除,仍是同号得正,异号得负,商的绝对值则可由两数的绝对值相除而得到。
    从上所述,可得到有理数除法与乘法类似的法则,见教科书第102页上的黑体字。
    在进行有理数除法运算时,既可以利用乘法(把除数化为它的倒数),也可以直接(特别是在能整除时)进行,具体利用哪种方式,根据情况灵活选用。
    例2见教科书第104页例2。
    解答过程见教科书第104页例2。
    注意:除法可以表示成分数和比的形式。如84÷(-7)可以写成或84:(-7);反过来,分数和比也可以化为除法,如可以写成(-12)÷3,15:6可以写成15÷6。这说明,除法、分数和比相互可以互相转化,并且通过这种转化,常常可以简化计算。
    例3见教科书第105页例3。
    分析:(l)有两种算法,一是将写成,然后用除法法则或利用乘法进行计算;二是将写成24+,然后利用分配律进行计算。
    对于(2),是乘除混合运算,可以接从左到右的顺序依次计算,也可以把除法化为乘法,按乘法法则运算。
    解答过程见教科书第105页例3。
    讲解教科书例3后的两个注意点。
    课堂练习:见教科书第105页练习。
    第1题可直接约分,也可化为除法。
    第2题可先化成乘法,并利用乘法的运算律简化运算。
    课堂小结:
    阅读教科书第102页至第105页上的内容,理解倒数的意义,除法法则的两种形式及教材上的注意点。
    提问:(l)倒数的意义是什么?有理数除法法则是什么?如何进行有理数的除法运算?(两种形式)如何进行有理数乘除混合运算?
    (2)0能作除数吗?什么数的倒数是它本身?的倒数是什么?(a≠0)
    四、课外作业
    习题2.9A组第1,2,3,4,5题的双数小题,第6题。
    选作题:习题2.9B组第1,2,3题双数小题。

中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生