正方形 —— 初中数学第四册教案

  2009-04-30 16:16:49  
正方形 —— 初中数学第四册教案课题: §4.6 正方形(一)教学目的: 使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”教学重点: 正方形的定义.教学难点: 正方形与矩形、菱形间的关系.教学方
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

正方形 —— 初中数学第四册教案


课题: §4.6  正方形(一)

教学目的: 使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”

教学重点: 正方形的定义.

教学难点: 正方形与矩形、菱形间的关系.

教学方法:双边合作  如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考:

(1)对角线相等的菱形是正方形吗?为什么?

(2)对角线互相垂直的矩形是正方形吗?为什么?

(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?

(4)能说“四条边都相等的四边形是正方形”吗?为什么?

(5)说“四个角相等的四边形是正方形”,对吗?

教学过程:

让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.

问:所得的图形是矩形吗?它与一般的矩形有什么不同?

    所得的图形是菱形吗?它与一般的菱形有什么不同?

    所得的图形在小学里学习时称它为什么图形?它有什么特点?

由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

(一)新课

由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质.

请同学们推断出正方形具有哪些性质?

性质1、(1)正方形的四个角都是直角。

(2)正方形的四条边相等。

性质2、(1)正方形的两条对角线相等。

(2)正方形的两条对角线互相垂直平分。

(3)正方形的每条对角线平分一组对角。

例1  求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.

已知:四边形ABCD是正方形,对角线AC、BD相交于点O.

求证:△ABO、△BCO、△CDO、△DAO是全等的

等腰直角三角形.

证明:∵四边形ABCD是正方形,

∴AC=BD,AC⊥BD,AO=CO=BO=DO

(正方形的两条对角线相等,并且互相垂直平分).

    ∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO≌△BCO≌△CDO≌△DAO.

问:如何判定一个四边形是正方形呢?

正方形的判定方法:

1.先判定四边形是矩形,再判定这个矩形是菱形;

2.先判定四边形是菱形,再判定这个菱形是矩形.

例2             已知:如图,点A′、B′、C′、D′分

别是正方形ABCD四条边上的点,并且AA′=BB′=CC′=DD′.

求证:四边形A′B′C′D′是正方形.

分析:根据正方形的四条边相等,四个角都是直角及已知条件,可以得到四个全等的直角三角形,它们的斜边都相等,从而判定四边形A′B′C′D′是菱形,再利用直角三角形两锐角互余证明菱形是矩形.

证明:(略)

(二)练习

1.已知正方形的边长为2cm,求这个正方形的周长、对角线长和正方形的面积.

2.正方形的对角线和它的边所成的角是多少度?为什么?

3.如果一个菱形的两条对角线相等,那么它一定是正方形,为什么?

4.如果一个矩形的两条对角线互相垂直,那么它一定是正方形,为什么?

三  小结

矩形、菱形、正方形都是特殊的平行四边形而且正方形还是特殊的矩形、特殊的菱形,它们的包含关系如图:

 

 

 

 

 

四  作业

1.已知正方形的一条对角线长4cm,求它的边长和面积.

2.两条对角线互相垂直平分且相等的四边形是正方形.

3.求证:正方形对边中点的连线将正方形分成四个小正方形.

4.求证:矩形的各内角平分线组成的四边形是正方形.

课题: §4.6  正方形(一)

教学目的: 使学生掌握正方形的定义、性质和判定,会用正方形的概念和性质进行有关的论证和计算,理解正方形与平行四边形、矩形、菱形的内在联系和区别,进一步加深对“特殊与一般的认识”

教学重点: 正方形的定义.

教学难点: 正方形与矩形、菱形间的关系.

教学方法:双边合作  如:在教学时可播放转换动画使学生获得生动、形象的可视思维过程,从而掌握判定一个四边形是正方形的方法.为了活跃学生的思维,可以得出下列问题让学生思考:

(1)对角线相等的菱形是正方形吗?为什么?

(2)对角线互相垂直的矩形是正方形吗?为什么?

(3)对角线垂直且相等的四边形是正方形吗?为什么?如果不是,应该加上什么条件?

(4)能说“四条边都相等的四边形是正方形”吗?为什么?

(5)说“四个角相等的四边形是正方形”,对吗?

教学过程:

让学生将事先准备好的矩形纸片,按要求对折一下,裁出正方形纸片.

问:所得的图形是矩形吗?它与一般的矩形有什么不同?

    所得的图形是菱形吗?它与一般的菱形有什么不同?

    所得的图形在小学里学习时称它为什么图形?它有什么特点?

由此得出正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.

(一)新课

由正方形的定义可以得知:正方形是有一组邻边相等的矩形,又是有一个角是直角的菱形,因此正方形具有矩形的性质,同时又具有菱形的性质.

请同学们推断出正方形具有哪些性质?

性质1、(1)正方形的四个角都是直角。

(2)正方形的四条边相等。

性质2、(1)正方形的两条对角线相等。

(2)正方形的两条对角线互相垂直平分。

(3)正方形的每条对角线平分一组对角。

例1  求证:正方形的两条对角线把正方形分成四个全等的等腰直角三角形.

已知:四边形ABCD是正方形,对角线AC、BD相交于点O.

求证:△ABO、△BCO、△CDO、△DAO是全等的

等腰直角三角形.

证明:∵四边形ABCD是正方形,

∴AC=BD,AC⊥BD,AO=CO=BO=DO

(正方形的两条对角线相等,并且互相垂直平分).

    ∴△ABO、△BCO、△CDO、△DAO都是等腰直角三角形,并且△ABO≌△BCO≌△CDO≌△DAO.

问:如何判定一个四边形是正方形呢?

正方形的判定方法:

1.先判定四边形是矩形,再判定这个矩形是菱形;

2.先判定四边形是菱形,再判定这个菱形是矩形.

例2             已知:如图,点A′、B′、C′、D′分

别是正方形ABCD四条边上的点,并且AA′=BB′=CC′=DD′.

求证:四边形A′B′C′D′是正方形.

分析:根据正方形的四条边相等,四个角都是直角及已知条件,可以得到四个全等的直角三角形,它们的斜边都相等,从而判定四边形A′B′C′D′是菱形,再利用直角三角形两锐角互余证明菱形是矩形.

证明:(略)

(二)练习

1.已知正方形的边长为2cm,求这个正方形的周长、对角线长和正方形的面积.

2.正方形的对角线和它的边所成的角是多少度?为什么?

3.如果一个菱形的两条对角线相等,那么它一定是正方形,为什么?

4.如果一个矩形的两条对角线互相垂直,那么它一定是正方形,为什么?

三  小结

矩形、菱形、正方形都是特殊的平行四边形而且正方形还是特殊的矩形、特殊的菱形,它们的包含关系如图:

 

 

 

 

 

四  作业

1.已知正方形的一条对角线长4cm,求它的边长和面积.

2.两条对角线互相垂直平分且相等的四边形是正方形.

3.求证:正方形对边中点的连线将正方形分成四个小正方形.

4.求证:矩形的各内角平分线组成的四边形是正方形.



中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生