Applications of Brain-Based Research to Second Language Teaching and Learning: Part 1

  2009-05-01 13:38:23  
Applications of Brain-Based Research to Second Language Teaching and Learning: Part 1by Mary Ann ChristisonThis article is adapted from the author's plenary speech at the 32nd Annual TESOL Convention in Seattle, Washington. The informal nature of the presentation has been retained. Part 2 will appea
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

Applications of Brain-Based Research to Second Language Teaching and Learning: Part 1

by Mary Ann Christison

This article is adapted from the author's plenary speech at the 32nd Annual TESOL Convention in Seattle, Washington. The informal nature of the presentation has been retained. Part 2 will appear in the June/July 1999 issue.

The topic of brain-based teaching and learning has intrigued me for the past several years and has received much attention in educational circles. Brain-based teaching and learning focuses on how the brain learns best and how language teachers can learn to understand and use this knowledge to help second language students learn English quickly and efficiently. In effect, we are talking about creating second language curricula that are brain-compatible.

I would like, first, to focus on some of the factors leading to this surge of interest in the human brain. For years, the only way we acquired information about how the brain worked was from autopsy examinations. Although these studies have been important, they provide only limited information about the human brain. Recent technological advances, however, have made it possible for us to study the living brain, and that is exciting.

Brain Biology 101

Few of us can recall much about brain biology from our studies because, at that time, we probably did not believe that the information about the brain related much to our career goals as teachers. My goal here, however, is to convince you of the relevance of brain biology to your work as language teaching professionals.

The Importance of the Limbic System

The cognitive side of learning usually receives a great deal of attention, but the affective side of learning is also important. Neuroscientists are just now mapping this important component of learning (Jensen, 1998). We know that blood flows to different parts of the brain, depending on the mental activities in which a person is involved. For instance, when we feel angry, threatened, anxious, or fearful, the blood flows from the neocortical area in the brain to the amygdala in the limbic area. This is called downshifting (MacLean, 1990). The limbic area of the brain is not the area of logical thought and decision making. These processes takes place in the neocortex. When downshifting occurs, the neocortex does not get sufficient glucose to function properly, causing the amygdala, in essence, to hijack the brain--which prevents us from making rational decisions.

Emotional Intelligence

In Emotional Intelligence, Goleman (1995) explains this feature of the human brain and why it is an important concept for the students we teach. For example, when we are angry or fearful, we should not, at that moment, make decisions about how to act. We need to have decided on a course of action before we find ourselves in these situations. Teaching students about how the brain functions and how to manage emotions has enormous implications for the problems of violence facing schools everywhere. Establishing violence-free schools where children feel safe begins with giving children tools to understand and manage emotions.

Goleman (1995) states that one's emotional quotient (EQ) may be more important than one's IQ in determining success in life. His support for this claim is based in part on research studies conducted at Harvard in the 1960s (Shoda, Walter, and Peake, 1990). This research, called the Marshmallow Study, involved a group of 4-year-olds who were given the choice of eating a marshmallow immediately or waiting to do so.

The diagnostic power of how a moment of impulse was handled by these 4-year-olds did not become clear until many years later, when researchers tracked down these same children as adolescents. "The emotional and social difference between the grab-the-marshmallow preschoolers and their gratification-delaying peers was dramatic" (Goleman, 1995, p. 81). Those who had resisted the temptation of eating the marshmallow immediately, at age 4, were now, as adolescents, more socially competent and self-reliant, were superior students, and had dramatically higher scores on the Scholastic Aptitude Test (SAT) tests. In fact, for those children who had waited the longest, there total scores were, on average, 210 points higher than those of the children who had grabbed eagerly. A delay-of-gratification test at age 4 is twice as powerful a predictor of what SAT scores will be as the IQ test is at age 4. IQ becomes a stronger predictor only after children learn to read. The importance of emotional self-regulation should therefore not be underestimated.

The Brain and Memory

Memory is often described as being one fixed thing. But memory is not a fixed thing or a singular skill; it is a process (Jensen, 1998). There is no one location in the brain involved in memory formation or one single pathway through which memories are retrieved. Our ability to recall information often depends on which pathway we access: procedural, episodic, semantic, and sensory.

Procedural Memory

Each time you participate in any endeavor, a certain number of neurons are activated. When you repeat the action, these same neurons respond again. The more times you repeat an action, the more efficient your brain becomes. Eventually, you need only trigger the beginning of the sequence of an action for the remaining pieces to fall into place like clockwork, almost without having to think about it. This type of memory, developed through repeated actions, is called procedural memory. We use this type of memory many times throughout the day in brushing our teeth, tying our shoes, and getting dressed. Dissecting the different pieces of a task you have in procedural memory and being able to teach others how to perform that task are two very different and difficult things that take time and effort. This is why the best skier is not always the best ski instructor.

Episodic Memory

Another kind of memory is episodic memory. Events recalled in memory are often emotionally charged--positively or negatively. Emotion is a hook that helps us remember events and episodes in our lives. However, memories of episodic events may not be completely accurate. Although we should not trust the accuracy of episodic memory for this reason, it does provide important clues to teachers concerning the retention of information. We remember events when they have an emotional hook. If we want to help the students in our classrooms remember important information, we need to hook the information to a positive emotional episode in the classroom.

Semantic Memory

Semantic memory is the type of memory most frequently used in the classroom. When we ask students to learn new vocabulary words or memorize grammar rules, lists, or details of specific content, we call on semantic memory. Semantic memory is used for remembering concepts and general knowledge. Unlike episodic memory, semantic memory is independent of context. When we remember information in semantic memory, we do not remember the time, place, and events surrounding the learning of this information. We remember the information itself.

Sensory Memory

Another type of memory is sensory memory. A great deal of what we recall is automatic. So much information comes to us simultaneously that to handle such a large influx of information without becoming overwhelmed, our brains have learned to sift and sort information. The sensory receptors act like a sponge; the conscious mind acts like a sieve, trying to get rid of whatever it considers irrelevant. It must respond quickly because more information is coming in all the time. Deciding what to keep and what to get rid of is an individual process. What is dropped from sensory memory in this process is gone forever.

Factors That Affect Attention

As language teachers, most of us have been taught that one important challenge we face is to retain students' attention. We have spent hours designing lesson plans and creating activities to do just that. Jensen (1998) suggests a different paradigm for teachers: Getting and keeping attention should be the exception, not the rule.

There are four basic factors that affect attention: novelty, need, emotion, and meaning. The use of novelty in the classroom for short periods is often effective in getting attention. Generally, the brain does poorly at sustaining high-level attention. External attention can be sustained at a constant level for perhaps only 10 minutes. Striving for constant attention from our students can be counterproductive. Novelty wears off after a few minutes but can be quite effective if used as a springboard for learning. Novelty can be the external stimulant for learning new information, but students must internally figure something out and make sense of it (Dudai, 1997). The brain continues to process information long after we are aware that we are doing it. This is why great ideas often seem to pop up out of nowhere. As language educators, should teachers use short, focused, divergent activities followed by diffused activities, such as reflection (Jensen, 1998).

Another key factor affecting attention is need. For instance, suppose you are very hungry and want to eat at a buffet. The buffet is free, but you are required to have a ticket. To get a ticket for the buffet

[1] [2] 下一页


中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生