一元一次方程的应用

  2009-04-30 19:29:18  
一元一次方程的应用教学设计示例  教学目标  1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;  2.培养学生观察能力,提高他们分析问题和解决问题的能力;  3.使学生初步养成正确思考问题的良好习惯.  教学重点和难点  一元一次方程解简单的应用题的方法和步骤
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

一元一次方程的应用

教学设计示例

  教学目标

  1.使学生初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;

  2.培养学生观察能力,提高他们分析问题和解决问题的能力;

  3.使学生初步养成正确思考问题的良好习惯.

  教学重点和难点

  一元一次方程解简单的应用题的方法和步骤.

  课堂教学过程(www.3edu.net)设计

  一、从学生原有的认知结构提出问题

  在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?

  为了回答上述这几个问题,我们来看下面这个例题.

  例1  某数的3倍减2等于某数与4的和,求某数.

  (首先,用算术方法解,由学生回答,教师板书)

  解法1:(4+2)÷(3-1)=3.

  答:某数为3.

  (其次,用代数方法来解,教师引导,学生口述完成)

  解法2:设某数为x,则有3x-2=x+4.

  解之,得x=3.

  答:某数为3.

  纵观例1的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.

  我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.

  本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.

  二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤

  例2  某面粉仓库存放的面粉运出 15%后,还剩余42 500千克,这个仓库原来有多少面粉?

  师生共同分析:

  1.本题中给出的已知量和未知量各是什么?

  2.已知量与未知量之间存在着怎样的相等关系?(原来重量-运出重量=剩余重量)

  3.若设原来面粉有x千克,则运出面粉可表示为多少千克?利用上述相等关系,如何布列方程?

  上述分析过程可列表如下:

  解:设原来有x千克面粉,那么运出了15%x千克,由题意,得

   x-15%x=42 500,

   

   所以  x=50 000.

  答:原来有 50 000千克面粉.

  此时,让学生讨论:本题的相等关系除了上述表达形式以外,是否还有其他表达形式?若有,是什么?

  (还有,原来重量=运出重量+剩余重量;原来重量-剩余重量=运出重量)

  教师应指出:(1)这两种相等关系的表达形式与“原来重量-运出重量=剩余重量”,虽形式上不同,但实质是一样的,可以任意选择其中的一个相等关系来列方程;

  (2)例2的解方程过程较为简捷,同学应注意模仿.

  依据例2的分析与解答过程,首先请同学们思考列一元一次方程解应用题的方法和步骤;然后,采取提问的方式,进行反馈;最后,根据学生总结的情况,教师总结如下:

  (1)仔细审题,透彻理解题意.即弄清已知量、未知量及其相互关系,并用字母(如x)表示题中的一个合理未知数;

  (2)根据题意找出能够表示应用题全部含义的一个相等关系.(这是关键一步);

  (3)根据相等关系,正确列出方程.即所列的方程应满足两边的量要相等;方程两边的代数式的单位要相同;题中条件应充分利用,不能漏也不能将一个条件重复利用等;

  (4)求出所列方程的解;

  (5)检验后明确地、完整地写出答案.这里要求的检验应是,检验所求出的解既能使方程成立,又能使应用题有意义.

  例3  (投影)初一2班第一小组同学去苹果园参加劳动,休息时工人师傅摘苹果分给同学,若每人3个还剩余9个;若每人5个还有一个人分4个,试问第一小组有多少学生,共摘了多少个苹果?

  (仿照例2的分析方法分析本题,如学生在某处感到困难,教师应做适当点拨.解答过程请一名学生板演,教师巡视,及时纠正学生在书写本题时可能出现的各种错误.并严格规范书写格式)

  解:设第一小组有x个学生,依题意,得

   3x+9=5x-(5-4),

   解这个方程: 2x=10,

   所以  x=5.

   其苹果数为 3× 5+9=24.

  答:第一小组有5名同学,共摘苹果24个.

  学生板演后,引导学生探讨此题是否可有其他解法,并列出方程.

  (设第一小组共摘了x个苹果,则依题意,得 )

  三、课堂练习

  1.买4本练习本与3支铅笔一共用了1.24元,已知铅笔每支0.12元,问练习本每本多少元?

  2.我国城乡居民 1988年末的储蓄存款达到 3 802亿元,比 1978年末的储蓄存款的 18倍还多4亿元.求1978年末的储蓄存款.

  3.某工厂女工人占全厂总人数的 35%,男工比女工多 252人,求全厂总人数.

  四、师生共同小结

  首先,让学生回答如下问题:

  1.本节课学习了哪些内容?

  2.列一元一次方程解应用题的方法和步骤是什么?

  3.在运用上述方法和步骤时应注意什么?

  依据学生的回答情况,教师总结如下:

  (1)代数方法的基本步骤是:全面掌握题意;恰当选择变数;找出相等关系;布列方程求解;检验书写答案.其中第三步是关键;

  (2)以上步骤同学应在理解的基础上记忆.

  五、作业

  1.买3千克苹果,付出10元,找回3角4分.问每千克苹果多少钱?

  2.用76厘米长的铁丝做一个长方形的教具,要使宽是16厘米,那么长是多少厘米?

  3.某厂去年10月份生产电视机2 050台,这比前年10月产量的 2倍还多 150台.这家工厂前年10月生产电视机多少台?

  4.大箱子装有洗衣粉36千克,把大箱子里的洗衣粉分装在4个同样大小的小箱里,装满后还剩余2千克洗衣粉.求每个小箱子里装有洗衣粉多少千克?

  5.把1400奖金分给22名得奖者,一等奖每人200元,二等奖每人50元.求得到一等奖与二等奖的人数


上一篇:直线

中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生