运用公式法

  2009-04-30 17:59:53  
运用公式法 教学设计示例运用公式法――完全平方公式(1)教学目标1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;2.理解完全平方式的意义和特点,培养学生的判断能力.3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.4.通
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

运用公式法

教学设计示例

运用公式法――完全平方公式(1)

教学目标

1.使学生会分析和判断一个多项式是否为完全平方式,初步掌握运用完全平方式把多项式分解因式的方法;

2.理解完全平方式的意义和特点,培养学生的判断能力.

3.进一步培养学生全面地观察问题、分析问题和逆向思维的能力.

4.通过运用公式法分解因式的教学,使学生进一步体会“把一个代数式看作一个字母”的换元思想。

教学重点和难点

  重点:运用完全平方式分解因式.

  难点:灵活运用完全平方公式公解因式.

教学过程设计

  一、复习

  1.问:什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?

 答:把一个多项式化成几个整式乘积形式,叫做把这个多项式因式分解.我们学过的因式分解的方法有提取公因式法及运用平方差公式法.

  2.把下列各式分解因式:

  (1)ax4-ax2             (2)16m4-n4.

  解 (1) ax4-ax2=ax2(x2-1)=ax2(x+1)(x-1)

     (2) 16m4-n4=(4m2)2-(n2)2

       =(4m2+n2)(4m2-n2)

       =(4m2+n2)(2m+n)(2m-n).  

问:我们学过的乘法公式除了平方差公式之外,还有哪些公式?

  答:有完全平方公式.

请写出完全平方公式.

  完全平方公式是:

          (a+b)2=a2+2ab+b2,   (a-b)2=a2-2ab+b2.

  这节课我们就来讨论如何运用完全平方公式把多项式因式分解.

  二、新课

  和讨论运用平方差公式把多项式因式分解的思路一样,把完全平方公式反过来,就得到

          a2+2ab+b2=(a+b)2;    a2-2ab+b2=(a-b)2.

  这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的两个公式就是完全平方公式.运用这两个式子,可以把形式是完全平方式的多项式分解因式.

  问:具备什么特征的多项是完全平方式?

  答:一个多项式如果是由三部分组成,其中的两部分是两个式子(或数)的平方,并且这两部分的符号都是正号,第三部分是上面两个式子(或数)的乘积的二倍,符号可正可负,像这样的式子就是完全平方式.

  问:下列多项式是否为完全平方式?为什么?

  (1)x2+6x+9;     (2)x2+xy+y2

  (3)25x4-10x2+1;   (4)16a2+1.

  答:(1)式是完全平方式.因为x2与9分别是x的平方与3的平方,6x=2·x·3,所以

               x2+6x+9=(x+3) .

  (2)不是完全平方式.因为第三部分必须是2xy.

  (3)是完全平方式.25x =(5x ) ,1=1 ,10x =2·5x ·1,所以

               25x -10x +1=(5x-1) .

  (4)不是完全平方式.因为缺第三部分.

  请同学们用箭头表示完全平方公式中的a,b与多项式9x2+6xy+y2中的对应项,其中a=?b=?2ab=?

  答:完全平方公式为:

  其中a=3x,b=y,2ab=2·(3x)·y.

    例1  把25x4+10x2+1分解因式.

  分析:这个多项式是由三部分组成,第一项“25x4”是(5x2)的平方,第三项“1”是1的平方,第二项“10x2”是5x2与1的积的2倍.所以多项式25x4+10x2+1是完全平方式,可以运用完全平方公式分解因式.

  解  25x4+10x2+1=(5x2)2+2·5x2·1+12=(5x2+1)2.

  例2  把1- m+ 分解因式.

  问:请同学分析这个多项式的特点,是否可以用完全平方公式分解因式?有几种解法?

  答:这个多项式由三部分组成,第一项“1”是1的平方,第三项“ ”是 的平方,第二项“- m”是1与m/4的积的2倍的相反数,因此这个多项式是完全平方式,可以用完全平方公式分解因式.

  解法1 1- m+ =1-2·1· +( 2=(1- 2.

  解法2 先提出 ,则

           1- m+ = (16-8m+m2)

                =  (42-2·4·m+m2)

                = (4-m)2.
  第 1 2 页  


下一篇:分组分解法
上一篇:提公因式法

中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生