和圆有关的比例线段

  2009-04-30 17:40:00  
和圆有关的比例线段 教学建议  1、教材分析  (1)知识结构   (2)重点、难点分析  重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

和圆有关的比例线段

教学建议

  1、教材分析

  (1)知识结构

  (2)重点、难点分析

  重点:相交弦定理及其推论,切割线定理和割线定理.这些定理和推论不但是本节的重点、本章的重点,而且还是中考试题的热点;这些定理和推论是重要的工具性知识,主要应用与圆有关的计算和证明.

  难点:正确地写出定理中的等积式.因为图形中的线段较多,学生容易混淆.

  2、教学建议

  本节内容需要三个课时.第1课时介绍相交弦定理及其推论,做例1和例2.第2课时介绍切割线定理及其推论,做例3.第3课时是习题课,讲例4并做有关的练3.

  (1)教师通过教学,组织学生自主观察、发现问题、分析解决问题,逐步培养学生研究性学习意识,激发学生的学习热情;

  (2)在教学中,引导学生“观察——猜想——证明——应用”等学习,教师组织下,以学生为主体开展教学活动.

第1课时:相交弦定理

  教学目标:

  1.理解相交弦定理及其推论,并初步会运用它们进行有关的简单证明和计算;

  2.学会作两条已知线段的比例中项;

  3.通过让学生自己发现问题,调动学生的思维积极性,培养学生发现问题的能力和探索精神;

  4.通过推论的推导,向学生渗透由一般到特殊的思想方法.

  教学重点:

  正确理解相交弦定理及其推论.

  教学难点:

  在定理的叙述和应用时,学生往往将半径、直径跟定理中的线段搞混,从而导致证明中发生错误,因此务必使学生清楚定理的提出和证明过程,了解是哪两个三角形相似,从而就可以用对应边成比例的结论直接写出定理.

  教学活动设计

  (一)设置学习情境

   1、图形变换:(利用电脑使AB与CD弦变动)

  ①引导学生观察图形,发现规律:∠A=∠D,∠C=∠B.

  ②进一步得出:△APC∽△DPB.

  

   ③如果将图形做些变换,去掉AC和BD,图中线段 PA,PB,PC,PO之间的关系会发生变化吗?为什么?

  组织学生观察,并回答.

  2、证明:

  已知:弦AB和CD交于⊙O内一点P.

  求证:PA·PB=PC·PD.

  (A层学生要训练学生写出已知、求证、证明;B、C层学生在老师引导下完成)

  (证明略)

  (二)定理及推论

  1、相交弦定理: 圆内的两条相交弦,被交点分成的两条线段长的积相等.

  结合图形让学生用数学语言表达相交弦定理:在⊙O中;弦AB,CD相交于点P,那么PA·PB=PC·PD.

  2、从一般到特殊,发现结论.

   对两条相交弦的位置进行适当的调整,使其中一条是直径,并且它们互 相垂直如图,AB是直径,并且AB⊥CD于P.

  提问:根据相交弦定理,能得到什么结论?

  指出:PC2=PA·PB.

  请学生用文字语言将这一结论叙述出来,如果叙述不完全、不准确.教师纠正,并板书

  推论 如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.

   3、深刻理解推论:由于圆是轴对称图形,上述结论又可叙述为:半圆上一点C向直径AB作垂线,垂足是P,则PC2=PA·PB. 

  若再连结AC,BC,则在图中又出现了射影定理的基本图形,于是有:

  PC2=PA·PB ;AC2=AP·AB;CB2=BP·AB

  (三)应用、反思

  例1 已知圆中两条弦相交,第一条弦被交点分为12厘米和16厘米两段,第二条弦的长为32厘米,求第二条弦被交点分成的两段的长.

   引导学生根据题意列出方程并求出相应的解.

  例2  已知:线段a,b.

  求作:线段c,使c2=ab.

  分析:这个作图求作的形式符合相交弦定理的推论的形式,因此可引导学生作出以线段a十b为直径的半圆,仿照推论即可作出要求作的线段.

  作法:口述作法.

  反思:这个作图是作两已知线段的比例中项的问题,可以当作基本作图加以应用.同时可启发学生考虑通过其它途径完成作图.

  练习1 如图,AP=2厘米,PB=2.5厘米,CP=1厘米,求CD.

  变式练习:若AP=2厘米,PB=2.5厘米,CP,DP的长度皆为整数.那么CD的长度是 多少?

   将条件隐化,增加难度,提高学生学习兴趣

  练习2 如图,CD是⊙O的直径,AB⊥CD,垂足为P,AP=4厘米,PD=2厘米.求PO的长.

  练习3  如图:在⊙O中,P是弦AB上一点,OP⊥PC,PC 交⊙O于C.  求证:PC2=PA·PB 

  引导学生分析:由AP·PB,联想到相交弦定理,于是想到延长 CP交⊙O于D,于是有PC·PD=PA·PB.又根据条件OP⊥PC.易 证得PC=PD问题得证.

  (四)小结

  知识:相交弦定理及其推论;

  能力:作图能力、发现问题的能力和解决问题的能力;

  思想方法:学习了由一般到特殊(由定理直接得到推论的过程)的思想方法.

  (五)作业

  教材P132中 9,10;P134中B组4(1).
  第 1 2 页  


上一篇:过三点的圆

中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生