因式分解的应用

  2009-04-30 16:22:42  
因式分解的应用
因式分解的简单应用一、 教学目标1、 会运用因式分解进行简单的多项式除法。2、 会运用因式分解解简单的方程。二、 教学重点与难点教学重点:因式分解在多项式除法和解方程两方面的应用。 教学难点:应用因式分解解方程涉及较多的推理过程。 三、 教学过程
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

因式分解的应用


因式分解的简单应用一、       教学目标1、  会运用因式分解进行简单的多项式除法。2、  会运用因式分解解简单的方程。二、       教学重点与难点教学重点:因式分解在多项式除法和解方程两方面的应用。    教学难点:应用因式分解解方程涉及较多的推理过程。      三、       教学过程(一)  引入新课1、  知识回顾(1)       因式分解的几种方法:  ①提取公因式法: ma+mb=m(a+b)                             ②应用平方差公式: –  = (a+b) (a-b)③应用完全平方公式:a ±2ab+b =(a±b)  (2)       课前热身:           ①分解因式: (x +4) y - 16x y(二) 师生互动,讲授新课1、运用因式分解进行多项式除法例1   计算: (1)  (2ab -8a b) ÷(4a-b)(2)(4x -9) ÷(3-2x)解:(1) (2ab -8a b)÷(4a-b)                =-2ab(4a-b) ÷(4a-b)        =-2ab (2)   (4x -9) ÷(3-2x)           =(2x+3)(2x-3) ÷[-(2x-3)]           =-(2x+3)           =-2x-3   一个小问题 : 这里的x能等于3/2吗 ?为什么? 想一想:那么(4x -9) ÷(3-2x) 呢?练习:课本P162——课内练习 12、  合作学习想一想:如果已知 (     )×(     )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若A×B=0 ,则有下面的结论:(1)A和B同时都为零,即A=0,且B=0(2)A和B中有一个为零,即A=0,或B=0试一试:你能运用上面的结论解方程(2x+1)(3x-2)=0                 吗?3、  运用因式分解解简单的方程例2 解下列方程:     (1)  2x +x=0           (2)  (2x-1) =(x+2) 解:x(x+1)=0                             解:(2x-1) -(x+2) =0则x=0,或2x+1=0                            (3x+1)(x-3)=0∴原方程的根是x1=0,x2=                 则3x+1=0,或x-3=0                                        ∴原方程的根是x1=   ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2 等练习:课本P162——课内练习2做一做!对于方程:x+2=(x+2)  ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么? 教师总结:运用因式分解解方程的基本步骤  (1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;  (2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) -16x =0解:将原方程左边分解因式,得      (x +4) -(4x) =0(x +4+4x)(x +4-4x)=0(x +4x+4)(x -4x+4)=0 (x+2) (x-2) =0接着继续解方程,5、  练一练 ①已知 a、b、c为三角形的三边,试判断 a  -2ab+b -c 大于零?小于零?等于零?解:     a -2ab+b -c              =(a-b) -c  =(a-b+c)(a-b-c)∵ a、b、c为三角形的三边∴ a+c ﹥b    a﹤b+c∴ a-b+c﹥0    a-b-c ﹤0即:(a-b+c)(a-b-c) ﹤0   ,因此 a -2ab+b -c 小于零。6、  挑战极限①已知:x=2004,求∣4x  -4x+3 ∣ -4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x  - 4x+3= (4x  -4x+1)+2 = (2x-1) +2 >0x  +2x+2 = (x  +2x+1)+1 = (x+1)  +1>0∴ ∣4x  -4x+3 ∣ -4 ∣ x  +2x+2 ∣ +13x+6= 4x  - 4x+3 -4(x  +2x+2 ) +13x+6= 4x  - 4x+3 -4x  -8x -8+13x+6= x+1即:原式= x+1=2004+1=2005 (三)梳理知识,总结收获因式分解的两种应用:(1)运用因式分解进行多项式除法(2)运用因式分解解简单的方程 (四)布置课后作业1、作业本6.42、课本P163作业题(选做)四、       教学反思 


下一篇:平方差公式
上一篇:一次函数

中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生