数学教案-等差数列

  2009-04-30 17:15:22  
数学教案-等差数列§3.2.1等差数列目的:1.要求学生掌握等差数列的概念2.等差数列的通项公式,并能用来解决有关问题。重点:1.要证明数列{an}为等差数列,只要证明an+1-an等于常数即可(这里n≥1,且n∈N*)2.等差数列的通项公式:an=a1+(n-1)d (n≥1,且n∈N*).3.等到差中项:若a、A、b成等差数列,则A叫做a、b的等差中
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

数学教案-等差数列

§3.2.1等差数列

目的:1.要求学生掌握等差数列的概念

2.等差数列的通项公式,并能用来解决有关问题。

重点:1.要证明数列{an}为等差数列,只要证明an+1-an等于常数即可(这里n≥1,且n∈N*

2.等差数列的通项公式:an=a1+(n-1)d (n≥1,且n∈N*).

3.等到差中项:若a、A、b成等差数列,则A叫做a、b的等差中项,且

难点:等差数列“等差”的特点。公差是每一项(从第2项起)与它的前一项的关绝对不能把被减数与减数弄颠倒。

      等差数列通项公式的含义。等差数列的通项公式由它的首项和公差所完全确定。换句话说,等差数列的首项和公差已知,那么,这个等差数列就确定了。

过程

一、引导观察数列:4,5,6,7,8,9,10,……

                      3,0,-3,-6,……

                     ,……

                        12,9,6,3,……

       特点:从第二项起,每一项与它的前一项的差是常数 — “等差”

二、得出等差数列的定义: (见P115)

        注意:从第二项起,后一项减去前一项的差等于同一个常数。

1.名称:AP     首项   公差

2.若   则该数列为常数列

3.寻求等差数列的通项公式:

              

    由此归纳为     当  (成立)

       注意:  1° 等差数列的通项公式是关于 的一次函数

              2° 如果通项公式是关于 的一次函数,则该数列成AP

          证明:若

                它是以 为首项, 为公差的AP。

              3° 公式中若  则数列递增, 则数列递减

  4° 图象: 一条直线上的一群孤立点

三、例题: 注意在 四数中已知三个可以

       求出另一个。

例1 (P115例一)

例2 (P116例二)  注意:该题用方程组求参数

例3 (P116例三)  此题可以看成应用题

四、  关于等差中项: 如果 成AP 则

      证明:设公差为 ,则  

            ∴

   例4  《教学与测试》P77 例一:在-1与7之间顺次插入三个数 使这五个数成AP,求此数列。

       解一:∵   ∴ 是-1与7 的等差中项

   又是-1与3的等差中项

 ∴

             又是1与7的等差中项  ∴

       解二:设  ∴

∴所求的数列为-1,1,3,5,7

五、判断一个数列是否成等差数列的常用方法

      1.定义法:即证明

        例5、已知数列 的前 项和 ,求证数列 成等差数列,并求其首项、公差、通项公式。 

          解:                      

时  

             时 亦满足  ∴

              首项     

               ∴ 成AP且公差为6

     2.中项法: 即利用中项公式,若 成AP。

           例6   已知 成AP,求证 也成AP。

             证明: ∵ 成AP  

   ∴ 化简得:                                       

                        

                      =

                 ∴ 也成AP

         3.通项公式法:利用等差数列得通项公式是关于 的一次函数这一性质。

         例7  设数列 其前 项和 ,问这个数列成AP吗?

            解:       

                   ∵    ∴    

                   ∴ 数列 不成AP   但从第2项起成AP。

五、小结:等差数列的定义、通项公式、等差中项、等差数列的证明方法

六、作业: P118 习题3.2    1-9

   七、练习:

       1.已知等差数列{an},(1)an=2n+3,求a1和d   (2)a5=20,a20=-35,写出数列的通项公式及a100.

       2.在数列{an}中,an=3n-1,试用定义证明{an}是等差数列,并求出其公差。

         注:不能只计算a2-a1a3-a2、a4-a3、等几项等于常数就下结论为等差数列。

       3.在1和101中间插入三个数,使它们和这两个数组成等差数列,求插入的三个数。

       4.在两个等差数列2,5,8,…与2,7,12,…中,求1到200内相同项的个数。

          分析:本题可采用两种方法来解。

            (1)用不定方程的求解方法来解。关键要从两个不同的等差数列出发,根据

相同项,建立等式,结合整除性,寻找出相同项的通项。

            (2)用等差数列的性质来求解。关键要抓住:两个等差数列的相同项按原来的前后次序仍组成一个等差数列,且公差为原来两个公差的最小公倍数。

      5.在数列{an}中, a1=1,an= ,(n≥2),其中Sn=a1+a2+…+an.证明数列是等

差数列,并求Sn

        分析:只要证明 (n≥2)为一个常数,只需将递推公式中的an转化

为Sn-Sn-1后再变形,便可达到目的。

     6.已知数列{an}中,an-an-1=2(n≥2), 且a1=1,则这个数列的第10项为(  )

        A  18       B 19       C 20       D21

     7.已知等差数列{an}的前三项为a-1,a+1,2a+3,则此数列的公式为(    )

        A  2n-5     B  2n+1     C  2n-3    D  2n-1

     8.已知m、p为常数,设命题甲:a、b、c成等差数列;命题乙:ma+p、 mb+p 、mc+p

成等差数列,那么甲是乙的(   )

A 充分而不必要条件    B 必要而不充分条件

C 充要条件            D既不必要也不充分条件

9.(1)若等差数列{an}满足a5=b,a10=c(b≠c),则a15=       

  (2)首项为-12的等差数列从第8项开始为正数,则公差d的取值范围是      

  (3)在正整数100至500之间能被11整除的整数的个数是      

10.已知a5=11,a8=5,求等差数列{an}的通项公式。

11.设数列{an}的前n项Sn=n2+2n+4(n∈N*)

(1)   写出这个数列的前三项a1,a2,a3;

(2)   证明:除去首项后所成的数列a2,a3,a4…是等差数列。

     12.已知两个等差数列5,8,11,…和3,7,11,…都有100项,问它们有多少个共同的项?

     13.若关于x的方程x2-x+a=0和x2-x+b=0(a≠b)的4个根可以组成首项为 的等到差数列,求a+b 的值。



中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生