下学期 5.3实数与向量的积1

  2009-04-30 16:34:12  
下学期 5.3实数与向量的积1 (第一课时)一.教学目标  1.理解并掌握实数与向量的积的意义.  2.理解两个向量共线的充要条件,能根据条件判断两个向量是否共线;  3.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想.二.教学重点:实数与向量的积的定义、
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

下学期 5.3实数与向量的积1

(第一课时)

一.教学目标

  1.理解并掌握实数与向量的积的意义.

  2.理解两个向量共线的充要条件,能根据条件判断两个向量是否共线;

  3.通过对实数与向量的积的学习培养学生的观察、分析、归纳、抽象的思维能力,了解事物运动变化的辩证思想.

二.教学重点:实数与向量的积的定义、运算律,向量共线的充要条件;

  教学难点:理解实数与向量的积的定义,向量共线的充要条件;

三.教学具准备

  直尺、投影仪.

四.教学过程

  1.设置情境

  我们知道,位移、力、速度、加速度等都是向量,而时间、质量等都是数量,这些向量与数量的关系常常在物理公式中体现,如力与加速度的关系f=ma,位移与速度的关系s=vt.这些公式都是实数与向量间的关系.

  师:我们已经学习了向量的加法,请同学们作出 和 向量,(已知向量已作在投影片上),并请同学们指出相加后,和的长度与方向有什么变化?这些变化与哪些因素有关?

  生: 的长度是 的长度的3倍,其方向与 的方向相同, 的长度是 长度的3倍,其方向与 的方向相反.

  师:很好!本节课我们就来讨论实数与向量的乘积问题,(板书课题:实数与向量的乘积(一))

  2.探索研究

  师:请大家根据上述问题并作一下类比,看看怎样定义实数与向量的积?可结合教材思考.

  生:我想这样规定:实数 与向量 的积就是 ,它还是一个向量.

  师:想法很好.不过我们要对实数 与向量 相乘的含义作一番解释才行.

  实数 与向量 的积是一个向量,记作 ,它的长度和方向规定如下:

  (1)

  (2) 时, 的方向与 的方向相同;当 时, 的方向与 的方向相反;特别地,当 或 时,

  下面我们讨论作为数乘向量的基本运算律:

  师:求作向量 和 ( 为非零向量)并进行比较,向量 与向量 相等吗?(引导学生从模的大小与方向两个方面进行比较)

  生: ,

  师:设 、 为任意向量, , 为任意实数,则有:

  (1)   (2)  (3)

  通常将(1)称为结合律,(2)(3)称为分配律,有时为了区别,也把(2)叫第一分配律,(3)叫第二分配律.

  请看例题

  【例1】计算:(1) , (2) .

  (3)

  解:(1)原式

  (2)原式

  (3)原式 .

  下面我们研究共线向量与实乘向量的关系.

  师:请同学们观察 , ,有什么关系.

  生:因为 ,所以 、 是共线向量.

  师:若 、 是共线向量,能否得出 ?为什么,可得出 吗?为什么?

  生:可以!因为 、 共线,它们的方向相同或相反.

  师:由此可得向量共线的充要条件.向量 与非零向量 共线的充分必要条件是有且仅有一个实数 ,使得

  此即教材中的定理.

  对此定理的证明,是两层来说明的.

  其一,若存在实数 ,使 ,则由实数与向量乘积定义中的第(2)条知 与 共线,即 与 共线.

  其二,若 与 共线,且不妨令 ,设 (这是实数概念).接下来看 、 方向如何:① 、 同向,则 ,②若 、 反向,则记 ,总而言之,存在实数 ( 或 )使 .

  【例2】如图:已知 , ,试判断 与 是否共线.

  解:∵

  ∴ 与 共线.

练习(投影仪)

  设 、 是两个不共线向量,已 , ,若 、 、 三点共线,求 的值.

参考答案

  ∵ 、 、 三点共线.

  ∴ 、 共线 存在实数 ,使

  即

  ∴ ,

3.练习反馈(投影仪)

  (1)若 为 的对角线交点, , ,则 等于(     )

  A.          B.          C.            D.

  (2)在△ 中,点 、 、 分别是边 、 、 的中点,那么 .

  (3)如图所示,在平行四边形 中, 是 中点,点 是 上一点, 求证 、 、 三点共线.

参考答案

  (1)B; (2) ;

  (3)设 , 则 又 ,∴ ∴ 、 、 共线.

4.总结提炼

  (1) 与 的积还是向量, 与 是共线的.

  (2)一维空间向量的基本定理的内容和证明思路,也是应用该定理解决问题的思路.该定理主要用于证明点共线、求系数、证直线平行等题型问题.

  (3)运算律暗示我们,化简向量代数式就像计算多项式一样去合并同类项.

五.板书设计

1.实数与向量的积定义

2.运算律

3.向量共线定理

例1

2

演练反馈

总结提炼


中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生