关于抛物线的十个最值问题

  2009-05-01 16:11:17  
关于抛物线的十个最值问题 本文用初等方法讨论了与抛物线有关的若干几何最值问题,得到了十个有趣的结论.为方便读者摘用, 现用定理形式叙述如下: 定理1.抛物线的所有焦半径中,以过顶点的焦半径为最短. 证明:不妨设抛物线的极坐标方程为 ρ= ,则显然有ρ≥ ,其中等号成立当且
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

关于抛物线的十个最值问题

本文用初等方法讨论了与抛物线有关的若干几何最值问题,得到了十个有趣的结论.为方便读者摘用, 现用定理形式叙述如下: 定理1.抛物线的所有焦半径中,以过顶点的焦半径为最短. 证明:不妨设抛物线的极坐标方程为 ρ=                   ,则显然有ρ≥    ,其中等号成立当且仅当θ=2kπ+π (k∈Z)即焦半径通过抛物线的顶点时.证毕. 定理2.抛物线的过焦点的所有弦中,以抛物线的通径为最短. 证明:设抛物线极坐标方程为 ρ=                 ,焦点弦为AB,且设A(ρ1,θ),B(ρ2,θ+π),则有          │AB│=ρ1+ρ2 =                 +                             =                       ≥ 2p =通径长, 其中等号成立当且仅当θ=kπ+π/2 (k∈Z) 即弦AB为通径时.证毕. 定理3.设A(a,0)是抛物线 y2=2px(p>0)的对称轴上的定点,M(x,y)是抛物线上的动点,则            │MA│m in =                                                证明:由│MA│2= (x-a)2+y2=(x-a)2+2px = x2-2(a-p)x+a2  = [x-(a-p)]2+p(2a-p),并且注意到 x∈[0,+∞),立知结论成立.证毕. 定理4.设A(a,b)是抛物线 y2=2px(p>0)内一定点, F是焦点,M是抛物线上的动点,则                                                 y           (│MA│+│MF│)min =a+p/2.                                          Q           M             A(a,b) 证明:如图1所示,作AQ⊥准线L:x=-p/2于Q,则知                             O  F                 x          (│MA│+│MF│)min =│AQ│         = a-(-p/2)=a+p/2.证毕.                                                                  图1 定理5.设线段AB是抛物线y2=2px(p>0)的过焦点的弦,分别以A、B为切点的抛物线的两条切线相交于点M,则三角形ABM的面积的最小值为p2. 证明:设A(x1,y1),B(x2,y2),则由A、F、B三点共线可得:x1y2-x2y1=p/2·(y2-y1)……………(1) 于是利用(1)式由两切线方程                                                                 y                                     AM: y1y=p(x+x1),                                                                                                    A                  BM: y2y=p(x+x2),                                                                         M          F                 x    易得M的坐标(x,y)适合 :                                                                              B                                                                                                                                   ∵ kMF·kAF=-1, ∴MF⊥AB,即│MF│是△MAB的AB边上的高.          图2 ∵ │MF│≥│FK│(焦点F到准线x=-p/2的距离)=p, 又由定理2知│AB│≥2p(通径长), ∴ S△MAB=1/2·│AB│·│MF│≥1/2·2p·p=p2, 因其中等号当且仅当AB⊥x轴时成立,故三角形MAB的最小值为p2.证毕. 定理6.过抛物线y2=2px的顶点O引两条互相垂直的动弦OA和OB,则三角形OAB的面积的最小值为4p2.                                                                                                      y 证明:设A(x1,y1),B(x2,y2),则由OA⊥OB得                                                                     A            x1x2+y1y2=0 ……………………………………(1)                                O                            x 将y12=2px1, y22=2px2代入(1)立得: x1x2=4p2…………(2)                                              于是                                                                                                                       B            (S△OAB)2 =1/4·│OA│2·│OB│2                      &nb

[1] [2] [3] 下一页


上一篇:我们需要微笑

中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生