在 教 学 中 渗 透 建 模 思 想

  2009-05-01 14:13:54  
在 教 学 中 渗 透 建 模 思 想在 教 学 中 渗 透 建 模 思 想 柯玉明 数学建模是指根据具体问题,在一定假设条件下找出解决这个问题的数学框架,求出模型的解,并对它进行验证的全过程。传统的数学教学总给人一种印象,似乎数学研究的内容仅仅是从公理、公式、定义出发的逻辑推理。实际
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

在 教 学 中 渗 透 建 模 思 想

在 教 学 中 渗 透 建 模 思 想
柯玉明
数学建模是指根据具体问题,在一定假设条件下找出解决这个问题的数学框架,求出模型的解,并对它进行验证的全过程。传统的数学教学总给人一种印象,似乎数学研究的内容仅仅是从公理、公式、定义出发的逻辑推理。实际上,在实践中有用的数学技术和其他科学技术一样,都是从观察开始的,都需要形象思维作为先导。数学建模回复了数学研究收集数据,建立模型,求取答案,解释验证的本来面目。数学建模思想的教学渗透不仅仅是大学生、研究生的教育问题,在中学里逐步进行有关数学建模思想的渗透更是顺应了当前素质教育和新课程标准教学改革的需要。
在现行的义务教育课程标准实验教科书(华师大版)数学初中一年级(七年级)(上)教材中,时常能遇到一些创设有关知识情境的问题,这些问题大多数可以结合数学思想、数学方法进行教学。在这个教学过程中进行数学建模思想的渗透,不仅可以使学生体会到数学并非只是一门抽象的学科,而且可以使学生感觉到利用数学建模的思想结合数学方法解决实际问题的妙处,进而对数学产生更大的兴趣。
这里就“有理数的加法法则”的教学来谈一谈如何在教学中渗透数学建模思想。“有理数的加法”这一节的第一部分就是学习有理数的加法法则,课文是按提出问题……进行实验……探索、概括的步骤来得出法则的。在实际教学中教师可以先给学生提出问题“一位同学在一条东西向的跑道上,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,与原来位置相距多少?”,然后让学生回答出这个问题的答案。(结果在实际教学中我发现学生所回答的答案中包括了全部可能的答案,这时我趁势提问回答出答案的同学是如何想出来的,并把他们的回答一一写在黑板上,用1、2、3、……来区分出不同的分类情况。)在学生回答完之后,就可以顺势介绍数学建模的数学思想和分类讨论的数学方法,并结合这个问题介绍数学建模的一般步骤:首先,由问题的意思可以知道求两次运动的总结果,是用加法来解答;然后对这个问题进行适当的假设:①先向东走,再向东走;②先向东走,再向西走;③先向西走,再向东走;④先向西走,再向西走;接下来根据四种假设的条件规定向东为正,向西为负,建立数学模型——数轴,画出图形并把各种条件下的运动结果在数轴上表示出来,列出算式根据实际意思写出这个问题的结果,分别得到四个等式,最后引导学生观察上述四个算式,归纳出有理数的加法法则。这样一来,不仅可以使学生学习有理数的加法法则,理解有理数的加法法则,而且在这个过程中也使学生学习到了分类讨论的数学方法,并且对数学建模有了一个初步的印象,为今后进一步学习体会数学建模打下了良好的基础。
又如“有理数的乘法法则”的教学引入问题“一只小虫沿一条东西向的跑道,以每分钟3米的速度爬行2分钟,那么它现在位于原来位置的哪个方向?相距多少米?”分析题意后,做一规定:向东为正,向西为负,引导学生发现可以建立数轴这个数学模型,然后分别按小虫的两种运动方向画出图形,列出式子,解出这个模型的解。比较所得的等式,就可以得到“把一个因数换成它的相反数,所得的积是原来的积的相反数”,进一步分析,就可以概括出“有理数的乘法法则”了。
从以上两个例子不难看出,只要充分挖掘教材有关内容的内涵和外延,就可以在教学的过程中渗透数学思想的教学。而所谓数学建模,就是先弄清实际问题的含义,从复杂的背景中找出问题的关键所在,根据问题的特点选择适当的数学模型,把实际问题转化为清晰的数学问题。
在实验教科书七年级下册的教材中,渗透数学建模思想就显得更加突出了。教材中的第六章“一元一次方程”和第七章“二元一次方程组”有许多与实际生活密切相关的问题,而要解决这些问题,除了首先必须掌握好解一元一次方程和二元一次方程组的知识外,也要学习怎样建立方程这种数学模型来解决实际问题,这既是第六章“一元一次方程”和第七章“二元一次方程组”的学习重点也是学习难点。
这两章知识内容的展开是从学生现有的认知准备,由实际情境出发,引入并展开有关知识通过学习使学生了解方程是反映现实世界数量关系的有效数学模型。在教学目标中就有强调在教学中要注重渗透数学建模的思想,使学生体会实际问题中常会遇到有关一个或多个未知量间互相依赖影响的问题,而一元一次方程和二元一次方程组恰好就是反映现实世界多个量之间相等关系的一种有效的数学模型。
接下来,就这两章中的第三节“实践与探索”的教学来简要说一说数学建模的思想的渗透。例如:在第六章的“实践与探索”中的例题大多未能给出完整解答,甚至只给出问题情境。在教学过程中,我们可以组织学生分成若干个学习小组,让学生参与探索、讨论比较算术方法与方程方法的优劣,使学生在学习小组的活动中体会方程这个数学模型能够较好地反映题目的数量关系,进而求解出问题的答案; 在第七章的“实践与探索”中则可以让学生参与探索、讨论比较用一元一次方程和二元一次方程组来解决问题的难易,引导学生发现有些问题用一元一次方程较好,而有些问题用一元一次方程较好。从而使学生进一步体会到应用方程这个数学模型能够较好得解决实际问题。
根据教材内容的设置,在教学中,组织学生积极参与对知识的学习和对问题的解决,引导学生参与探索、讨论,在这过程中渗透数学建模的思想,也符合课程标准的基本理念。通过课本知识的教学,在学生学习知识的过程中渗透数学建模的思想,能够使学生初步体会数学建模的思想,了解数学建模的一般步骤,进而培养学生用数学建模的思想来处理实际中的某些问题,提高学生解决这些问题的能力,从而促进学生数学素质的提高。



中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生