浅谈数学中的一种常用解题策略—转化

  2009-05-01 13:36:36  
浅谈数学中的一种常用解题策略—转化浅谈数学中的一种常用解题策略——转化   “转化”是数学中最常用最基本的思维方式之一。转化就是在分析解决问题时,把那些待解决或难解决的问题,通过某种转 化过程,把复杂、隐蔽的问题转化为简单、明显的问题。初中数 学的转化方法多种多样,常用的有下列几种:   一、高次(或多元
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

浅谈数学中的一种常用解题策略—转化

浅谈数学中的一种常用解题策略——转化


   “转化”是数学中最常用最基本的思维方式之一。转化就是在分析解决问题时,把那些待解决或难解决的问题,通过某种转 化过程,把复杂、隐蔽的问题转化为简单、明显的问题。初中数 学的转化方法多种多样,常用的有下列几种:


  一、高次(或多元)向低次(或低元)转化;


   例1已知X2-2X-l=0,则代数式X3—X2—3X十2的值是 (97年广东省初三数学竞赛第一道试题)


  (A)O (B)1 (C)2 (D)3


  分析:此题若通过已知X2-2X-1=0解得


   X=2土石代入原式求出答案,显然运算量大。因此为了减 少运算量,我们应将问题转化,经分析可知:X2=2X十1代人原式,从而达到降次的目的,最后得到正确答案(D),由此可见,通过降次,可以将复杂问题转化为简单低次的问题,从而得到解决。


  分析:解多元方程组的思想方法是将多元方程组转化为低元方程组,最后转化为一次方程而求得,此题的解题思想方法如下所示: 三元一次方程组消元二元一次方程组消元一元一次方程


  二、特殊与一般的互相转化从特殊(一船)到一般(特殊)的思维方法是数学和其它科 学领域中进行探索,发现真理知识的重要途径。


  例3圆周角定理:一条弧所对的圆周角等于它所对的圆心 角的一半。


  分析:考虑到圆周角与圆心角的一般关系,我们可以分为下列三种情况来证明。


  (1)如图1圆心在圆周角的一边上:


  易证得∠APB=1/2∠AOB


  (2)如图2圆心在圆周角的内部:


  易证∠APB=∠APS-∠BPS=1/2∠AOS -1/2∠BOS=1/2∠AOS


  (3)如图3圆心在圆周角的外部:


  易得∠APB=∠APS-∠BPS =∠AOS-1/2∠BOS 』 J =1/2∠AOB


  综上所述,不论哪种情况,圆周角都等于它所对的弧所对的圆心角的一半,从而命题得证(详细过程参考《几何》第三册P91-92)这是由特殊到一般的转化。


  例4 如图4,已知定圆⊙O1;与定圆⊙02外切于P点,AB 是过切点P的任一直线分别与⊙01和⊙02交于A、B 求证: AP/BP是一个定值。则应先找出这个定值,而题中给出的条件中固定不变的只有两圆的半径(不防设为R.r)即要证AP/BP与R,r有 关,由此启发我们过切点P作⊙Ol与⊙02的直径CD构成Rt △APC~Rt△BPD,得出AP/BP=CP/DP=r/R:参由此可见,找出定值的进程就是由一船到特殊转化的过程。

  三、正面向反面的转化。


   很多数学的问题正面难于入手,但从问题的反面则易于解决,故此我们通常用正面向反面的转化方法去解决一些数学问 题。


   例5若三个方程


  至少有一个方程有实数解,试求实数a的取值范围。


  分析:条件“至少有一个方程有实数解”的情况十分复杂,如逐个方程讨论,势必造成运算过程繁琐,且容易出错。但若从 这个问题的反面去思考,将问题转化为“三个方程都没有实数解”,则使问题变得单一、明白,由此可得

  综合得出-3/2<a<-1时,三个方程都没有实数解,由此可知, 当a≤-3/2或a≥-1时,三个方程必定有一个方程有实数根。


  四、隐含向明朗转化。


  由于有些数学问题表面上没有任何突破口、入手之处,但只要我们认真分析找出题中隐蔽原条件,就会使问题迎刃而解。


   例6化简:(2+1)(22+1)(24+1)…(264+1)+1


  (摘初一级第八届“希望杯”培训题)


  分析:此题初看起来难于动笔,查只要认真分析,观察一下题型结构,较快发现一个隐蔽条件:1=2-1,再利用平方差公 式,很易使问题得到解决。


  解:原式=(2-1)(2-1)(22十1)…(264十1)十1

      =(22-1)(22十1)(24十1)…(264十1)十1

       =2128


  五、致与形的相互转化。


  例△ABC的三边为连续的自然数,且最大 角为最小角的二倍,求三边长(95年天津市,初 三竞赛题)


  分析:这道题的常见解法是构造三角形法,依题目的已知条件,构造如图5设∠CAB=2 ∠C,对应边分别为X-1,X,X十1延长CA到 D,使AD=AB,连结BD,得到△ADB。△BDC,因此有(x+1)/(x-1)=(2x-1)/(x+1),解得x=5


  从而得出三角形三边之长

   六、综合(或复杂)向单一(或简单)的转化,是解综合题 的常用思维方法之一。


  例8如图690n与①02外切于点 P,CD为两圆的外公切线,PT为两圆的 内公切线,且①O,与①02的半径分别为— 9和4


  (1)求PT的长;


  (2)求Sin01的值;


  (3)证明PC·PD=PA·PB;


  (95年广西壮族自治区升中试第31题)


  分析:这个综合(或复杂)题可以转化为三个单一(或简 单)的基本问题是:


  1、在△PCD中,若TC=Pr=TD,点T在cD上cD=12,求 Pr的长;


  2、在直角梯形DC0102中,若O1C=9,02D=4,0102=13, 求SinOl的值;


  3、若BC//AD、CA与BD相交于点P,求证PC·PD=PA·PB 这样分为三个小题后,问题(1),(2)易解决,而问题(3) 只证得点C、O、B共线,点D、02、A共线,即可得CB//DA,从而得出PC/PB=PD/PA得出结论PC·PD=PA·四。


  综上可知,转化的思想方法是解决数学问题的一种最常见最基础的思维方法,也是作为一名中学生(或中学教师)必须掌握 并灵活运用的思维方法,而常见的六种转化,也是中学数学中最 常用的转化手段。


中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生