浅析小学数学教学中的思维训练

  2009-05-01 12:49:09  
浅析小学数学教学中的思维训练数学教学主要是数学思维活动的教学。学生初步的逻辑思维能力的发展需要有一个长期的培养和训练过程 。数学教学的思维训练,是根据学生的思维特点,结合教学内容在教学过程中实现的。课堂教学是对学生进行 思维训练的主阵地,所以,要把思维训练贯穿于数学教学的各个方面。 激发学生思维动机
欢迎来到论文参考中心,在您阅读前,与您分享:路是脚踏出来的,历史是人写出来的。人的每一步行动都在书写自己的历史。 —— 吉鸿昌
  

浅析小学数学教学中的思维训练

数学教学主要是数学思维活动的教学。学生初步的逻辑思维能力的发展需要有一个长期的培养和训练过程 。数学教学的思维训练,是根据学生的思维特点,结合教学内容在教学过程中实现的。课堂教学是对学生进行 思维训练的主阵地,所以,要把思维训练贯穿于数学教学的各个方面。
    激发学生思维动机,理清学生思维脉络,培养学生思维方法,是提高学生思维能力的重要方面。
    一、激发学生思维动机
    动机是人们“因需要而产生的一种心理反映”,它是人们行为活动的内动力。因此,激发学生思维的动机 ,是培养其思维能力的关键因素。
    教师如何才能激发学生思维动机呢?这就要求教师必须在教学中充分发挥主导作用,根据学生心理特点, 教师有意识地挖掘教材中的知识因素,从学生自身生活需要出发,使其明确知识的价值,从而产生思维的动机 。例如:在教学“按比例分配”这一内容时,首先要使学生明确学习这一知识的目的:在平均分不合理的情况 下,就产生了按比例分配这种新的分配方法。教学时可设计这样一个问题:一个车间把生产1000个零件的任务 交给了张师傅和李师傅,完成任务后要把500元的加工费分给他们。结果张师傅加工了600个零件,李师傅加工 了400个零件。这时把500元的加工费平均分给他们合理吗?从而引发出学生探求合理的分配方法的思维动机。
    这样设计教学既渗透了“知识来源于生活”的数学思想,又使学生意识到学习知识的目的是为了解决生活 和生产中的实际问题。学生的学习动机被激发起来了,自然会全身心地投入到后面的教学活动之中。
    可见,创设思维情境,激发学生的思维动机,是对其进行思维训练的重要环节。
    二、理清学生思维脉络
    认知心理学家指出:“学生思维能力的发展是寓于知识发展之中的。”在教学中,对于每一个问题,既要 考虑它原有的知识基础,又要考虑它下联的知识内容。只有这样,才能更好地激发学生思维,并逐步形成知识 脉络。我们教学的关键在于使学生的这种思维脉络清晰化,而理清思维脉络的重点就是抓住思维的起始点和转 折点。
    1.引导学生抓住思维的起始点。数学知识的脉络是前后衔接、环环紧扣的,并总是按照发生—发展—延伸 的自然规律构成每个单元的知识体系。学生获得知识的思维过程也是如此,或从已有的经验开始,或从旧知识 引入,这就是思维的开端。从学生思维的起始点入手,把握住思维发展的各个层次逐步深入直至终结。如果这 个开端不符合学生的知识水平或思维特点,学生就会感到问题的解决无从下手,其思维脉络就不会在有序的轨 道上发展。
    例如:在教学“按比例分配”这一内容时,从学生已有知识基础—平均分入手,把握住平均分与按比例分 配的关系,即把一个数量平均分就是按照1:1的比例进行分配,从而将学生的思维很自然地引入按比例分配,为 学生扫清了认知上的障碍。
    再如:解答按比例分配应用题时,从问题入手逐步深化认识,不但能够解决学生思维过程中无从下手的问 题,而且有利于使学生的思维沿着起点发展,培养其思维的流畅性。
    当然,不同知识、不同学生的思维起点不尽相同,但不管起点如何,作为数学教学中的思维训练必须从思 维的“发生点”上起步,以旧知识为依托,并通过“迁移”、“转化”,使学生的思维流程清晰化、条理化、 逻辑化。
    2.引导学生抓住思维的转折点。学生的思维有时会出现“卡壳”的现象,这就是思维的障碍点。此时教学 应适时地加以疏导、点拨,促使学生思维转折,并以此为契机促进学生思维发展。
    例如:甲乙两人共同加工一批零件,计划甲加工的零件个数是乙加工的2/5。实际甲比计划多加工了34个, 正好是乙加工零件个数的7/9。这批零件共有多少个?
    学生在思考这道题时,虽然能够准确地判断出2/5和7/9这两个分率都是以乙加工的零件个数为标准量的, 但是,这两个标准量的数值并不相等,这样,学生的思维出现障碍。教师应及时抓住这个机会,引导学生开拓 思路:“甲加工的零件个数是乙的2/5”,这说明甲、乙计划加工零件的个数是几比几?“正好是乙加工零件个 数的7/9”又说明甲、乙实际加工零件个数是几比几?这样,就将以乙标准量的分率关系转化为以总个数为标准 量的分率关系,直至解答出这道题。在这个过程中,教师引导学生由分数联想到比的过程,实际就是学生思维 发生转折的过程。抓住这个转折点,有利于克服学生的思维障碍,有利发散思维的培养。
    总之,教师帮助学生理清思维脉络,注意思维过程中的起始点和转折点,才是小学数学教学中思维训练的 重点所在。
    三、培养学生思维方法
    学生在解决数学问题时,常常需要把面对的问题通过转化、分析、综合、假设等变化成已知的数学问题。 在这个思维过程中,要依据具体情况恰当地运用分析与综合、具体与抽象、求同与求异、一般与特殊等思维方 法。
    1.分析与综合。总起来说,思维就是通过分析、综合来进行的。所谓分析就是把已经认识到的事物之间的 联系在认识中分解开来。分析的方法应用在数学教学中,就是由问题入手,逐层确定解决问题的条件。所谓综 合就是把原来还没有认识到的事物之间的联系,在认识中建立起来。综合的方法应用在数学教学中,就是由条 件入手,逐层确定能够解决的问题。
    例如:一位工人师傅要加工一批零件,计划每天加工60个,需30天完成。实际每天加工了90个,照这样计 算,可提前几天完成?采用分析的方法:
    附图{图}
    由此可见,恰当地采用分析或综合的思维方法,有利于沟通条件与问题的联系,建立起清晰的思维脉络。 当然,根据具体问题将分析与综合结合起来进行分析,更会提高思维的效果。
    2.具体与抽象。小学生的思维特点是从具体形象思维逐步向抽象逻辑思维过渡。发展学生思维的“着眼点 ”应放在逐步过渡上。教学中,结合知识内容,精心组织操作活动,可以帮助学生将抽象的事物具体化。例如 :在教学“圆柱体侧面积”这一内容时,教师引导学生将准备好的圆柱模型侧面剪开,并观察剪开后的长方形 或平行四边形、正方形的各个部分与圆柱各部分之间的关系,从而概括出圆柱体侧面积的计算公式。通过这一 系列的操作、观察、思考、概括,不仅使学生理解并掌握了圆柱体侧面积公式,而且也增强了学生的操作意识 ,提高了操作能力,更培养了学生变抽象为具体的思维方法。

[1] [2] 下一页  


中学教案大全

语文教案: 七年级语文教案 八年级语文教案 九年级语文教案 综合性语文教案 高一语文教案 高二语文教案 高三语文教案

数学教案: 七年级数学教案 八年级数学教案 九年级数学教案 高一数学教案 高二数学教案 高三数学教案

英语教案: 七年级英语教案 八年级英语教案 九年级英语教案 高一英语教案 高二英语教案 高三英语教案

政治教案: 七年级政治教案 八年级政治教案 九年级政治教案 高一政治教案 高二政治教案 高三政治教案

物理教案: 八年级物理教案 九年级物理教案 高一物理教案 高二物理教案 高三物理教案

化学教案: 九年级化学教案 高一化学教案 高二化学教案 高三化学教案

历史教案: 七年级历史教案 八年级历史教案 九年级历史教案 高一历史教案 高二历史教案 高三历史教案

地理教案: 七年级地理教案 八年级地理教案 九年级地理教案 高中地理教案

生物教案: 七年级生物教案 八年级生物教案 九年级生物教案 高中生物教案

音乐教案: 初中音乐教案 高中音乐教案

体育教案: 初中体育教案 高中体育教案

美术教案: 初中美术教案 高中美术教案

信息技术教案: 初中信息技术教案 高中信息技术教案

中考备考复习资源: 中考复习指南 中考语文复习资料 中考数学复习资料 中考英语复习资料 中考物理复习资料 中考化学复习资料 中考政治复习资料 中考历史复习资料 中考地理复习资料 中考生物复习资料

高考备考复习资源: 高考语文复习资料 高考数学复习资料 高考英语复习资料 高考物理复习资料 高考化学复习资料 高考政治复习资料 高考历史复习资料 高考地理复习资料 高考生物复习资料 高考文综复习资料 高考理综复习资料 高考大综复习资料

教学论文: 教育综合论文 语文教学论文 数学教学论文 英语教学论文 政治教学论文 物理教学论文 化学教学论文 历史教学论文 地理教学论文 生物教学论文 音乐教学论文 美术教学论文 体育教学论文 信息技术教学论文 德育教学论文 班主任教学论文

推荐名言:
  • 春蚕到死丝方尽,人至期颐亦不休。一息尚存须努力,留作青年好范畴。 —— 吴玉章

  • 但愿每次回忆,对生活都不感到负疚 —— 郭小川

  • 人的一生可能燃烧也可能腐朽,我不能腐朽,我愿意燃烧起来! —— 奥斯特洛夫斯基

  • 你若要喜爱你自己的价值,你就得给世界创造价值。 —— 歌德

  • 社会犹如一条船,每个人都要有掌舵的准备。 —— 易卜生