过三点的圆 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:①确定圆的定理.它是圆中的基础知识,是确定圆的理论依据;②不在同一直线上的三点作圆.“作圆”不仅体现在证明“确定圆的定理”的重要作用,也是解决实际问题中常用的方法;③反证法证明命题的一般步骤.反证法虽是选学内容,但
圆 1、教材分析 (1)知识结构 (2)重点、难点分析 重点:①点和圆的三种位置关系,圆的有关概念,因为它们是研究圆的基础;②五种常见的点的轨迹,一是对几何图形的深刻理解,二为今后立体几何、解析几何的学习作重要的准备. 难点:① 圆的集合定义,学生不容易理解为什么必须满足两个条件
解直角三形应用举例 1.知识结构: 2.重点和难点分析 重点和难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题. 3.教法建议 本节知识与实际联系密切,这些知识可以直接用来解决一些实际问题,这在几何的许多章节中是做不到的,所以要充分发挥这一
解直角三角形 教学建议 1.知识结构: 本小节主要学习解直角三角形的概念,直角三角形中除直角外的五个元素之间的关系以及直角三角形的解法. 2.重点和难点分析: 教学重点和难点:直角三角形的解法. 本节的重点和难点是直角三角形的解法.为了使学生熟练掌握直角三角形的解法,首先要使学生
正切和余切 第一课时 一、教学目标 1.使学生了解正切、余切的概念,能够正确地用 、 表示直角三角形(其中一个锐角为 )中两边的比,了解 与 成倒数关系,熟记30°、45°、60°角的各个三角函数值,会计算含有这三个特殊锐角的三角函数值的式子,会由一个特殊锐角的三角函数值说出这个角的度数,了解一个
正弦和余弦 教学建议 1.知识结构:本小节主要学习正弦、余弦的概念,30°、45°、60°角的正弦、余弦值,一个锐角的正弦(余弦)值与它的余角的余弦(正弦)值之间的关系,以及应用上述知识解决一些简单问题(包括引言中的问题)等. 2.重点、难点分析 (1) 正弦、余弦函数的定义是本节的重点,因为
频率分布 频率分布教案设计第一课时 素质教育目标 (一)知识教学点 使学生了解频率分布的意义,了解做出一组数据的频率分布的步骤和要求. (二)能力训练点 培养学生观察问题、分析问题、解决问题的能力,培养学生统计数据的能力. (三)德育渗透点 培养学生认真、耐心、细致的学习态度和
用计算器求平均数、标准差与方差 教学目标 1、掌握用计算器求平均数、标准差与方差的方法. 2、会用计算器求平均数、标准差与方差.教学建议 重点、难点分析 1、本节内容的重点是用计算器求平均数、标准差与方差,难点是准确操作计算器. 2、计算器上的标准差用 表示,和教科书中用S表示不一样
方差 教学设计示例1 第一课时 素质教育目标 (一)知识教学点 使学生了解方差、标准差的意义,会计算一组数据的方差与标准差. (二)能力训练点 1.培养学生的计算能力. 2.培养学生观察问题、分析问题的能力,培养学生的发散思维能力. (三)德育渗透点 1.培养学生认真、耐心、细致的
众数与中位数 教学设计示例1 素质教育目标 (一)知识教学点 1.使学生理解众数与中位数的意义. 2.会求一组数据的众数和中位数. (二)能力训练点 培养学生的观察能力、计算能力. (三)德育渗透点 1.培养学生认真、耐心、细致的学习态度和学习习惯. 2.渗透数学知识来源于实践,
平均数 第一课时 素质教育目标 (一)知识教学点 1.使学生初步了解统计知识是应用广泛的数学内容 . 2.了解平均数的意义,会计算一组数据的平均数 . 3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数 . (二)能力训练点 培养学生的观察能力、计算能力 . (三)德育渗透点
反比例函数及其图象 教学设计示例1 反比例函数及其图象 教学目标: 1、理解反比例函数,并能从实际问题中抽象出反比例关系的函数解析式; 2、会画出反比例函数的图象,并结合图象分析总结出反比例函数的性质; 3、渗透数形结合的数学思想及普遍联系的辨证唯物主义思想; 4、体会数学从实践中来又
二次函数y=ax2+bx+c 的图象 教学目标: 1、使学生进一步理解二次函数的基本性质; 2、渗透解析几何,数形结合,函数等数学思想.培养学生发现问题解决问题,及逻辑思维的能力. 3、使学生参与教学过程,通过主体的积极思维,体验感悟数学.逐步建立数学的观念,培养学生独立地获取知识的能力. 教学重点
二次函数y=ax2+bx+c 的图象 第一课时 教学目标 1.使学生会用描点法画出二次函数 与 的图象; 2.使学生能结合图象确定抛物线 与 的对称轴与顶点坐标; 3.通过比较抛物线 与 同 的相互关系,培养学生观察、分析、总结的能力; 4. 在本节的教学中,继续向学生进行数形结合、转化的数学思想方法的渗
二次函数y=ax2的图象 教学设计示例1 课题:二次函数 的图象 教学目标: 1、会用描点法画出二次函数 的图象; 2、根据图象观察、分析出二次函数 的性质; 3、进一步理解二次函数和抛物线的有关知识 4、渗透由特殊到一般的辩证唯物主义观点; 5、渗透数形结合的数学思想方法,培养观察能力和
一次函数的图象和性质 教学目标: 1、使学生能进一步理解函数的定义,根据实际情况求函数的定义域,并能利用函数解决实际问题中的最值问题。 2、渗透函数的数学思想,培养学生的数学建模能力,以及解决实际问题的能力。 3、能初步建立应用数学的意识,体会到数学的抽象性和广泛应用性。 教学重点:
一次函数 教学目标: 1、知道一次函数与正比例函数的意义. 2、能写出实际问题中正比例关系与一次函数关系的解析式. 3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性. 4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力. 教学重点:对于一次函数与正比例函数概念
函数的图象 教学目标: 1、培养学生看图识图的能力. 2、在识图过程中,渗透数形结合的数学思想. 3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性. 4、激发学生学习数学的兴趣,培养学生的探索精神 教学重点:培养学生看图识图的能力 教学难点:渗透数形结合的数学思想
直线和圆的位置关系 —— 初中数学第六册教案 直线与圆的位置关系 执教者:刁正久 教学目标: 1.使学生理解直线和圆的相交、相切、相离的概念。 2.掌握直线与圆的位置关系的性质与判定并能够灵活运用来解决实际问题。 3.培养学生把实际问题转化为数学问题的能力及分类和化归的能力。 重点难点:
圆内接四边形 —— 初中数学第六册教案 圆内接四边形 执教者:刁正久 一、教学目标: 掌握圆内接四边形的相关概念以及圆内接四边形的性质定理。 二、教学重点和难点: 重点:圆内接四边形的性质定理。 难点:圆内接四边形性质定理的准确、灵活应用。 三、教学过程: 1、带领学生复习圆内接三角形
圆柱和圆锥的侧面展开图 第一课时 素质教育目标 (一)知识教学点 1.使学生了解圆柱的特征,了解圆柱的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆柱的侧面展开图是矩形. 2.使学生会计算圆柱的侧面积或全面积. (二)能力训练点 1.通过圆柱形成过程的教学,培养学生观察能力、抽
圆、扇形、弓形的面积 圆、扇形、弓形的面积(一) 教学目标: 1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算; 2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力; 3、在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”
圆的周长、弧长 圆周长、弧长(一) 教学目标: 1、初步掌握圆周长、弧长公式; 2、通过弧长公式的推导,培养学生探究新问题的能力; 3、调动学生的积极性,培养学生的钻研精神; 4、进一步培养学生从实际问题中抽象出数学模型的能力,综合运用所学知识分析问题和解决问题的能力. 教学重点:弧长
画正多边形 教学设计示例1 教学目标: (1)了解用量角器等分圆心角来等分圆;掌握用尺规作圆内接正方形和正六边形,能作圆内接正八边形、正三角形、正十二边形; (2)通过画图培养学生的画图能力; (3)对学生进行审美教育,提高学生的审美能力,促进学生对几何学习的热情. 教学重点: (
正多边形的有关计算 教学设计示例1 教学目标: (1)会将正多边形的边长、半径、边心距和中心角、周长、面积等有关的计算问题转化为解直角三角形的问题; (2)巩固学生解直角三角形的能力,培养学生正确迅速的运算能力; (3)通过正多边形有关计算公式的推导,激发学生探索和创新. 教学重点: