引导思考.自主探究.激活思维 ----数学习题课“一题多问”“一题多变”教学案例与评析 数学习题课对所学过的知识能够起到检查、巩固、提高、拓展的功效,在进行概念教学的过程中,应当适当安排一些习题课。然而,习题课的选题,容量怎样安排才合理,效益如何提高,如何培养学生的良好思维品质?我一直在思考、在尝试。我认
不等式的性质1 教学目标 1.理解不等式的性质,掌握不等式各个性质的条件和结论之间的逻辑关系,并掌握它们的证明方法以及功能、运用; 2.掌握两个实数比较大小的一般方法; 3.通过不等式性质证明的学习,提高学生逻辑推论的能力; 4.提高本节内容的学习,;培养学生条理思维的习惯和认真严谨的学
不等式的性质2 第二课时 教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法.教学重点:定理1,2,3的证明的证明思路和推导过程教学难点:理解证明不等式的
算术平均数与几何平均数(一) 教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的
算术平均数与几何平均数(二) 第一课时 一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等
算术平均数与几何平均数--探究活动 进货次数问题探讨 题目 某公司某年需要某种计算机元件8000个,在一年内连续作业组装成整机卖出(每天需同样多的元件用手组装,并随时运出整机至市场),该元件向外购买进货,每次(不论购买多少件)须花手续费500元,如一次进货,可少花手续费,但8000个元件的保管费很有观
不等式的性质(一) 教学目标 1.理解不等式的性质,掌握不等式各个性质的条件和结论之间的逻辑关系,并掌握它们的证明方法以及功能、运用; 2.掌握两个实数比较大小的一般方法; 3.通过不等式性质证明的学习,提高学生逻辑推论的能力; 4.提高本节内容的学习,;培养学生条理思维的习惯和认真严谨
不等式的性质(二) 第二课时 教学目标 1.理解同向不等式,异向不等式概念; 2.掌握并会证明定理1,2,3; 3.理解定理3的推论是同向不等式相加法则的依据,定理3是移项法则的依据; 4.初步理解证明不等式的逻辑推理方法.教学重点:定理1,2,3的证明的证明思路和推导过程教学难点:理解证明不等
不等式的性质(三) 探究活动 能得到什么结论题目 已知 且 ,你能够推出什么结论? 分析与解:由条件推出结论,我们可以考虑把已知条件的变量范围扩大,对已知变量作运算,运用不等式的性质,或者跳出不等式去考虑一般的数学表达式。思路一:改变 的范围,可得: 1. 且 ; 2. 且 ;思路二:由已
算术平均数与几何平均数(一) 教学目标 (1)掌握“两个正数的算术平均数不小于它们的几何平均数”这一重要定理; (2)能运用定理证明不等式及求一些函数的最值; (3)能够解决一些简单的实际问题; (4)通过对不等式的结构的分析及特征的把握掌握重要不等式的联系; (5)通过对重要不等式的
算术平均数与几何平均数(二) 第一课时 一、教材分析 (一)教材所处的地位和作用 “算术平均数与几何平均数”是全日制普通高级中学教科书(试验修订本·必修)数学第二册(上)“不等式”一章的内容,是在学完不等式性质的基础上对不等式的进一步研究.本节内容具有变通灵活性、应用广泛性、条件约束性等
不等式的证明(一) 教学目标 (1)理解证明不等式的三种方法:比较法、综合法和分析法的意义; (2)掌握用比较法、综合法和分析法来证简单的不等式; (3)能灵活根据题目选择适当地证明方法来证不等式; (4)能用不等式证明的方法解决一些实际问题,培养学生分析问题、解决问题的能力; (6)
不等式的证明(二) 第二课时 教学目标 1.进一步熟练掌握比较法证明不等式; 2.了解作商比较法证明不等式; 3.提高学生解题时应变能力.教学重点 比较法的应用教学难点 常见解题技巧教学方法 启发引导式教学活动 (一)导入新课 (教师活动)教师打出字幕(复习提问),请三位同学回答问题,
不等式的证明(三) 第四课时 教学目标 1.掌握分析法证明不等式; 2.理解分析法实质——执果索因; 3.提高证明不等式证法灵活性.教学重点 分析法教学难点 分析法实质的理解教学方法 启发引导式教学活动 (一)导入新课 (教师活动)教师提出问题,待学生回答和思考后点评. (学生活动)
不等式的解法举例 教学目标 (1)能熟练运用不等式的基本性质来解不等式; (2)在巩固一元一次不等式和一元一次不等式组、一元二次不等式的解法基础上,掌握分式不等式、高次不等式的解法; (3)能将较复杂的绝对值不等式转化为简单的绝对值不等式、一元二次不等式(组)来解; (4)通过解不等式
含有绝对值的不等式 教学目标 (1)掌握绝对值不等式的基本性质,在学会一般不等式的证明的基础上,学会含有绝对值符号的不等式的证明方法; (2)通过含有绝对值符号的不等式的证明,进一步巩固不等式的证明中的由因导果、执要溯因等数学思想方法; (3)通过证明方法的探求,培养学生勤于思考,全面思
直线的倾斜角和斜率 教学目标 (1)了解直线方程的概念. (2)正确理解直线倾斜角和斜率概念.理解每条直线的倾斜角是唯一的,但不是每条直线都存在斜率. (3)理解公式的推导过程,掌握过两点的直线的斜率公式. (4)通过直线倾斜角概念的引入和直线倾斜角与斜率关系的揭示,培养学生观察、探索
直线的方程 教学目标 (1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程. (2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程. (3)掌握直线方程各种形式之间的互化. (4)通过直线方程一般式的教
两条直线的位置关系 教学目标 (1)熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系. (2)理解一条直线到另一条直线的角的概念,掌握两条直线的夹角. (3)能够根据两条直线的方程求出它们的交点坐标. (4)掌握点到直线距离公式的推导和应用. (5)进一步
简单的线性规划(一) 教学目标 (1)使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域; (2)了解线性规化的意义以及线性约束条件、线性目标函数、线性规化问题、可行解、可行域以及最优解等基本概念; (3)了解线性规化问题的图解法,并能应用它解决一些简单的实际
“预设”与“生成”不是“你死我活”
“ 生成 ” 是新课程倡导的一个重要教学理念。 “ 生成 ” 对应于 “ 预设 ” 。传统的课堂教学,常常只有预设而不见生成。教师期望学生按教案设想做出回答,不要 “ 节外生枝 ” ,否则就努力引导学生得出预定答案为止 ……
数学课标指出,教师与学生都是课程内容的开发者。
“ 生成 ” 是新课程倡导的一个重要教学理念。 “ 生成 ” 对应于 “ 预设 ” 。传统的课堂教学,常常只有预设而不见生成。教师期望学生按教案设想做出回答,不要 “ 节外生枝 ” ,否则就努力引导学生得出预定答案为止 ……
数学课标指出,教师与学生都是课程内容的开发者。
《函数性质的运用》案例分析一、相关背景介绍 建构主义理论告诉我们,学习是学生在原有认知经验基础上主动建构新知识的过程。这一建构过程实际上需要学生将原有知识与新知识(包括思想、观点、方法)进行有效组合与沟通。而学生知识、方法的迁移,水平、能力的提高均依赖于这个过程。从这个意义上说,数学学习实际上是指学生
《一元一次不等式组 ( 三 ) 》教学案例点评背景介绍 本学期,我们二中八年级的数学老师在渤海大学范文贵老师的指导下进行了一些教学上的改革尝试。范老师现正在华东师大攻读博士学位,他研读的课题是探究式教学。本节课是在范老师初次介绍了探究式教学的意义等理论知识的基础上上的一堂课,我的这堂课得到了范老师的肯定,他
《完全平方公式》北师大版七年级数学
一、教学目标:
经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平
一、教学目标:
经历探索完全平方公式的过程,进一步发展符号感和推理能力;在变式中,拓展提高;通过积极参与数学学习活动,培养学生自主探究能力,勇于创新的精神和合作学习的习惯;重点是正确理解完全平方公式(a±b)2=a2±2ab+b2,并初步运用;难点是完全平
长方形、正方形和平行四边形教学设计与评析长方形、正方形和平行四边形教学设计与评析
教学目的:
1、使学生初步掌握长方形、正方形的基本特征,会在方格纸上画长方形和正方形。
2、初步认识平行四边形,能正确区分长方形、正方形和平行四边形。
3、通过观察、测量、动手操作和小组合
教学目的:
1、使学生初步掌握长方形、正方形的基本特征,会在方格纸上画长方形和正方形。
2、初步认识平行四边形,能正确区分长方形、正方形和平行四边形。
3、通过观察、测量、动手操作和小组合