单项式除以单项式 教学建议 知识结构 重难点分析 本节的重点是单项式除以单项式的法则与应用.本章的重点是整式的乘除,作为整式除法内容中不可或缺重要组成部分,单项式除以单项式起着承上启下的作用,它既是同底数幂除法性质的延伸,又是多项式除以单项式的基础和关键,因此
同底数幂的除法 第二课时 同底数幂的除法(第二课时) 一、教学目标 1.理解并掌握零指数幂和负指数幂公式并能运用其进行熟练计算. 2.培养学生抽象的数学思维能力. 3.通过例题和习题,训练学生综合解题的能力和计算能力. 4.渗透公式自向运用与逆向运用的辩证统一的数学
同底数幂的除法 教学建议 1.知识结构: 2.教材分析 (1)重点和难点 重点: 准确、熟练地运用法则进行计算.同底数幂的除法性质是幂的运算性质之一,是整式除法的基础,一定要打好这个基础. 难点: 根据乘、除互逆的运算关系得出法则.教科书中根据除法是乘法的逆运算
完全平方公式 教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是完全平方公式的熟记及应用.难点是对公式特征的理解(如对公式中积的一次项系数的理解).完全平方公式是进行代数运算与变形的重要的知识基础。 1.两数和(或差)的平方,等于它们的平方和,加上(或
平方差公式 教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是掌握公式的结构特征及正确运用公式.难点是公式推导的理解及字母的广泛含义.平方差公式是进一步学习完全平方公式、进行相关代数运算与变形的重要知识基础. 1.平方差公式是由多项式乘法直接计算得
多项式的乘法 教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是利用公式(x+a)(x+b)=x2+(a+b)x+ab熟练地计算.难点是理解并掌握公式.本节内容是进一步学习乘法公式及后续知识的基础. 1.多项式乘法法则,是多次运用单项式与多项式相乘的法则得到的.计算 时,先
单项式与多项式相乘 教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是掌握单项式与多项式相乘的法则.难点是正确、迅速地进行单项式与多项式相乘的计算.本节知识是进一步学习多项式乘法,以及乘法公式等后续知识的基础。 1.单项式与多项式相乘,就是用单项式去
单项式的乘法 教学建议 一、知识结构 二、重点、难点分析 本节的重点是:单项式乘法法则的导出.这是因为单项式乘法法则的导出是对学生已有的数学知识的综合运用,渗透了“将未知转化为已知”的数学思想,蕴含着“从特殊到一般”的认识规律,是培养学生思维能力的重要内容之一
幂的乘方与积的乘方(二) 一、教学目标 1.进一步理解积的乘方的运算性质,准确掌握积的乘方的运算性质,熟练应用这一性质进行有关计算. 2.通过推导性质进一步训练学生的抽象思维能力,通过完成例2,培养学生综合运用知识的能力. 3.培养实事求是、严谨、认真、务实的学习态
幂的乘方与积的乘方 教学建议 一、知识结构 二、重点、难点分析 本节教学的重点是幂的乘方与积的乘方法则的理解与掌握,难点是法则的灵活运用. 1.幂的乘方 幂的乘方,底数不变,指数相乘,即 ( 都是正整数) 幂的乘方 的推导是根据乘方的
同底数幂的乘法(二) 同底数幂的乘法(二) 一、教学目标 1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算. 2.培养学生运用公式熟练进行计算的能力. 3.培养学生善于分析问题和解决问题的能力,激发学生勇往直前的斗志. 4.渗透数学公式的结构美、和谐美.
同底数幂的乘法 同底数幂的乘法(一) 一、素质教育目标 1.理解同底数幂乘法的性质,掌握同底数幂乘法的运算性质. 2.能够熟练运用性质进行计算. 3.通过推导运算性质训练学生的抽象思维能力. 4.通过用文字概括运算性质,提高学生数学语言的表达能力. 5.通过学生
《走一步,再走一步》教案设计课题: 邓稼先教学目的: 1、 掌握本文的生字新词,理解文中两个古诗文小段。 2、 灵活运用速读、默读、朗读等阅读方式阅读课文。 3、 学习邓稼先将个人生命奉献给祖国国防事业的崇高情怀。 教学重点: 用速读、默读、朗读等阅读方式阅读课文。 教学难点: 1、 第一部分写百年屈辱史的用意; 2、
数学教案-余角和补角一、教学目标:⑴ 在具体情景中了解余角与补角,懂得余角和补角的性质,通过练习掌握余角和补角的概念及性质,并能运用它们解决一些简单的实际问题。⑵ 经历观察、操作、推理、交流等活动,发展学生的几何概念,培养学生的推理能力和表达能力。⑶ 体验数学知识的发生、发展过程,敢于面对数学活动中的困
数学教案-梯形《梯形》教案 教学目标:1、经历探索梯形的有关概念、性质的过程,在简单的操作活动中发展学生的说理意识、主动探究的习惯,初步体会平移、轴对称的有关知识在研究等腰梯形性质中的运用;2、探索并掌握梯形的有关概念和基本性质,探索并了解等腰梯形的性质,能用它们解决简单的问题。教学重点:探索梯形的有关
数学教案-有理数的加法说课教案1.3.1 “有理数的加法”说课教案 -------------------------------------------------------------------------------- 今天我说课的题目是“有理数的加法(一)"。本节课选自华东师范大学出版社出版的〈义务教育课程标准实验教科书〉七年级(上),。这一节课是本册书第二章第六节第一课
一次方程组的应用 第二课时 (第二课时) 一、素质教育目标 (一)知识教学点 会列二元一次方程组解简单的应用题,并能检查所得结果是否正确、合理. (二)能力训练点 培养学生分析问题、解决问题的能力. (三)德育渗透点 1.进一步渗透化未知为已知的思想.
一次方程组的应用 (第一课时) 一、素质教育目标 (一)知识教学点 会列二元一次方程组解简单的应用题,并能检查结果是否正确、合理. (二)能力训练点 培养学生分析问题、解决问题的能力. (三)德育渗透点 1.体会代数方法的优越性. 2.向学生进一步渗透把
三元一次方程组的解法举例 教学建议 一、重点、难点分析 本节教学的重点是掌握三元一次方程组的解法,教学难点是解法的灵活运用.能够熟练的解三元一次方程组是进一步学习一次方程组的应用,以及一次不等式组的解法的基础. 1.方程组有三个未知数,每个方程的未知项的次数都是
用加减法解二元一次方程组 教学建议 1.教材分析 (1)知识结构 (2)重点、难点分析 重点:本小节的重点是使学生学会用加减法解二元一次方程组.这也是一种全新的知识,与在一元一次方程两边都加上、减去同一个数或同一个整式,或者都乘以、除以同一个非零数的情况是不一样
用代入法解二元一次方程组 教学建议 一、重点、难点分析 本节的教学重点是使学生学会用代入法.教学难点在于灵活运用代入法,这要通过一定数量的练习来解决;另一个难点在于用代入法求出一个未知数的值后,不知道应把它代入哪一个方程求另一个未知数的值比较简便. 解二元一次方
二元一次方程组 教学建议 一、重点、难点分析 本节教学的重点是使学生了解二元一次方程、二元一次方程组以及二元一次方程组的解的含义,会检验一对数值是否是某个二元一次方程组的解.难点是了解二元一次方程组的解的含义.这里困难在于从1个数值变成了2个数值,而且这2个数值合在
定理与证明(二) 一、教学目标 1.了解“证明”的必要性和推理过程中要步步有据. 2.了解综合法证明的格式和步骤. 3.通过一些简单命题的证明,初步训练学生的逻辑推理能力. 4.通过证明步骤中由命题画出图形,写出已知、求证的过程,继续训练学生由几何语句正确画出几何
定理与证明(一) 教学建议 (一)教材分析 1、知识结构 2、重点、难点分析 重点:真命题的证明步骤与格式.命题的证明步骤与格式是本节的主要内容,是学习数学必具备的能力,在今后的学习中将会有大量的证明问题;另一方面它还体现了数学的逻辑性和严谨性. 难点:推论证
命题 教学设计方案(二) 教学目标 1.使学生了解命题、真命题和假命题等概念. 2.使学生了解几何命题是由“题设”和“结论”两部分组成.能够初步区分命题的题设和结论,或把命题改写成“如果……,那么……”的形式 重点和难点 分清命题的题设和结论,既是教学的重点又是教